
Received 6 September 2024; revised 7 November 2024; accepted 7 December 2024. Date of publication 16 December 2024;
date of current version 6 January 2025.

Digital Object Identifier 10.1109/OJCAS.2024.3518110

Pasithea-1: An Energy-Efficient Sequential
Reconfigurable Array With CPU-Like

Programmability
TOBIAS KAISER 1 (Graduate Student Member, IEEE), ESTHER GOTTSCHALK 2, KAI BIETHAHN 1,

AND FRIEDEL GERFERS 1 (Senior Member, IEEE)

1Chair of Mixed Signal Circuit Design, Technische Universität Berlin, 10623 Berlin, Germany
2Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut, 10587 Berlin, Germany

This article was recommended by Associate Editor J. Viraraghavan.

Corresponding author: T. KAISER (e-mail: kaiser@tu-berlin.de)

ABSTRACT This work presents Pasithea-1, a coarse-grained reconfigurable array (CGRA) that combines
energy efficiency with CPU-like programmability. Its extensible instruction set uses sequential control
flow in code fragments of up to 64 RISC-like instructions, which encode control and dataflow graphs in
adjacency lists. Combined with dedicated, uniform processing elements, this enables fast compilation from
C source code (1.4 s mean compile time). Demonstrator measurements reveal energy efficiency of up to 601
int32 MIPS/mW at 0.59V and performance of up to 148 MIPS at 0.90V. Compared to a RISC reference
system, mean energy efficiency is improved by 2.24× with 1.71× higher execution times across 12 of
14 benchmarks. Program-dependent factors underlying variations in energy efficiency are identified using
dynamic program analysis. To reduce operand transfer energy, seven interconnect topologies are evaluated:
a flat bus, five crossbar variants and a logarithmic network. Best results are obtained for a crossbar
topology, reducing mean dynamic tile energy by 19%. Furthermore, floating-point (FP) support is added
to the instruction set and evaluated using three binary-compatible microarchitectures, presenting distinct
area-performance-energy tradeoffs. The interconnect and FP microarchitecture explorations demonstrate
that, unlike CGRAs utilizing low-level bitstreams, Pasithea’s instruction set hides microarchitectural details,
which makes it possible to optimize hardware without severing binary compatibility.

INDEX TERMS Computer architecture, reconfigurable architectures, microprocessor chips, energy effi-
ciency, code generation, on-chip interconnection networks, floating-point arithmetic.

I. INTRODUCTION

THERMAL limits, battery size and energy costs restrict
computing systems in all application domains, mak-

ing energy efficiency a paramount design criterion. Von
Neumann CPUs, while convenient to program, are limited in
energy efficiency. Under today’s constraints of Post-Dennard
scaling, technological advancements in energy efficiency no
longer keep pace with increasing logic densities [1]. Thus,
new architectures are needed.
One such approach for future general-purpose computing

is coarse-grained reconfigurable arrays (CGRAs) [2], which
are “interconnected network[s] of configurable logic and

storage elements” [3] with word-level logic, storage and
interconnect primitives. Through massive spatial parallelism,
CGRAs can achieve high performance in applications that
can be suitably parallelized. Aside from this, their con-
struction has unique advantages in energy efficiency over
Von Neumann CPUs: Instead of relying on continuous
instruction fetching and decoding, configuration data can be
locally retained for multiple executions, which saves energy
(instruction reuse). Additionally, array units exchange data
locally (spatial dataflow), which bypasses the indirection
of a global CPU register file and reduces energy use
further.

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 5, 2024 1

HTTPS://ORCID.ORG/0000-0002-9301-4609
HTTPS://ORCID.ORG/0009-0003-4762-7046
HTTPS://ORCID.ORG/0009-0004-0581-1651
HTTPS://ORCID.ORG/0000-0002-0520-1923

KAISER et al.: PASITHEA-1: AN ENERGY-EFFICIENT SEQUENTIAL RECONFIGURABLE ARRAY

CGRAs have been successfully employed as accelerators
for regularly structured compute-intensive kernels, such as
in digital signal processing [4], [5], [6], image process-
ing [6], [7], [8] and machine learning applications [7].
They have also been proposed as general-purpose CPU
replacement [3], [9], [10], but broad adoption has failed
to emerge. This can be attributed to challenges in pro-
grammability [10], [11], [12]. We highlight the following
programmability and extensibility characteristics, which
supported the proliferation of CPUs, but are often lacking
in CGRAs:

1) support for the C programming model and source
code, enabling the reuse of existing source code and
programming methods,

2) fast code generation, enabling quick development
cycles for large and complex programs,

3) hiding microarchitectural features from the instruction
set (ISA/µarch decoupling), which makes it possible
to improve microarchitectures for performance, power
or area while preserving machine code compatibility,
and

4) instruction-set extensibility, which makes it possible to
adapt the architecture to specific task domains without
breaking machine code compatibility.

This paper demonstrates how these programmability
advantages of CPUs can be reconciled with energy
efficiency advantages of CGRAs. For this purpose,
the architecture Pasithea-1 is introduced, evaluated and
extended. Unlike CGRAs in which instructions run in paral-
lel, Pasithea-1 follows a sequential execution model. This
limits performance, but facilitates CPU-like programmability
and extensibility. At the same time, it advances beyond
CPU energy efficiency through instruction reuse and spatial
dataflow.
From a software perspective, Pasithea-1 is designed to

seamlessly replace a CPU-based microcontroller. It is
programmed in C without architecture-specific annotations,
which makes it easy and affordable to adopt in existing and
new software projects.
The base architecture of Pasithea-1, its code generation

and first silicon measurement results were presented at prior
conferences [13], [14]. This paper extends this research with
following novel contributions:

1) To reduce energy of operand transfers, seven
interconnect networks are evaluated. For ISA/µarch
decoupling, machine code compatibility is preserved.

2) A floating-point instruction-set extension is
proposed and implemented in three binary-compatible
microarchitectural variants, which provide different
area-energy-performance tradeoffs.

3) Using an extended set of benchmarks and dynamic
program analysis, task-dependent factors determining
the energy efficiency of Pasithea-1 are investigated.

4) By correlating silicon and simulation results of the
base architecture, the validity of energy efficiency
predictions for new design variants is substantiated.

The paper is structured as follows: Section II introduces
related work. The Pasithea-1 instruction set and microarchi-
tecture including new floating-point variants and interconnect
topologies are described in Section III. Section IV covers
physical design and the silicon prototype. The C compiler
is described in Section V, followed by benchmarking,
measurement and simulation methodology in Section VI.
Results are shown in Section VII. Section VIII concludes
the paper.

II. RELATED WORK
A key distinction in CGRA design is whether individual
PEs time-multiplex instructions on a cycle-to-cycle basis
(shared PEs) or are only assigned a single instruction (ded-
icated PEs) [15]. With dedicated PEs, instructions remain
stationary throughout the execution of a mapped subtask.
This increases energy efficiency and simplifies code gener-
ation [12]. Pasithea-1 is a dedicated-PE architecture. Other
examples are Tartan [9], BilRC [5], HyCUBE [6], [16],
Plasticine [17], RipTide [10] and Amber [7]. In contrast to
this, shared-PE architectures [8], [18], [19], [20] facilitate
greater utilization of logic resources. Statically scheduled
shared-PE architectures share many properties of VLIW
processors [21].
The spatial design principles underlying CGRAs have also

been applied to CPU design. In-place processors execute
CPU machine code, which is based on sequential control
flow, distributing instructions spatially. Ultrascalar [22] and
CRIB [23] pioneered this approach to reduce multi-issue
CPU control overhead and to maximize instruction-level
parallelism. DiAG [24] extended the approach by thread
pipelining and instruction reuse: Instructions are kept station-
ary for multiple executions, which avoids repetitive fetching
and saves energy. Like these architectures, Pasithea-1 follows
a sequential control flow model. In contrast to them, it uses a
custom instruction set that exposes spatial characteristics of
the computing fabric. This avoids the need to map general-
purpose register references to spatial resources on the fly and
thus enables a significantly simpler interconnect network.
Many CGRAs [8], [10], [15], [17], [19] as well as in-

place processors [22], [23], [24] are furthermore categorized
as dataflow architectures: Analogous to classical dataflow
architectures [25], they execute instructions based on operand
availability. In this narrow sense, Pasithea-1 is not a
dataflow architecture. Nevertheless, like classical dataflow
architectures, its instructions directly encode edges of the
dataflow graph, and operand values are linked to instructions,
omitting the logical indirection of a central register file.

A. INTERCONNECT NETWORKS
CGRAs vary in the organization of their interconnect
networks. Most notable are mesh [5], [6], [7], [9], [10]
and linear topologies [23], [24], [26], [27]. Less commonly,

2 VOLUME 5, 2024

bus [3] and crossbar [4] networks are found. To reduce
the delay of a linear network, Ultrascalar proposes a
logarithmic topology [22]. Using ADRES [18] as template,
[28] evaluated the energy and performance impact of various
mesh and bus interconnects. In contrast to the interconnect
exploration in this work, ADRES machine code must be
recompiled for each interconnect network modification.
On top of this, architectures vary in whether interconnect

resources are statically assigned to specific data sources [7]
or dynamically shared [5], [10]. Furthermore, some
architectures provide pipeline registers as part of the
interconnect [5], [7], while others omit them to optimize
for energy efficiency rather than performance [10]. In
Pasithea-1, interconnect resources are dynamically shared
and not pipelined.

B. COMPILING FOR CGRAS
Most CGRAs use custom instruction sets (bitstream formats)
and require machine code to be generated ahead of time.
While some support the C programming model [10], [18],
others require the use of custom domain-specific pro-
gramming languages [5], [7]. Spatial and temporal aspects
impose unique challenges and opportunities on CGRA
compiler design, including placement/binding, routing and
scheduling problems. This typically requires compilers to
use computationally demanding algorithms [12] such as
simulated annealing [5], [7]; integer linear programming,
SAT solving [10]; SMT solving, the conjugate gradient
method and A* search [7]. The associated complexity and
time overhead contribute to the programmability barriers
seen in CGRAs.
To simplify programming, some CGRAs run CPU

machine code using dynamic binary translation (DBT).
Reference [26] and MuTARe [27] perform DBT in hardware
to offload instruction sequences to a CGRA that is integrated
into a CPU datapath. Using configuration caches, time
and energy is saved on repeated executions. An alternative
approach is to perform DBT in software [29], which enables
more complex optimizations and decouples the CGRA from
the CPU datapath.

III. ARCHITECTURE
A. INSTRUCTION SET
Pasithea’s instructions operate on 32-bit integers. Groups of
up to 64 instructions form code fragments, which are loaded
contiguously into CGRA fabric and act as machine-level
functions. Unlike in typical CGRAs, instructions within a
fragment are executed using sequential control flow.
Each instruction encodes fragment-local dataflow and

control flow using up to four target instruction pointers
(TIPs). By directly referencing fragment-local instructions,
TIPs facilitate spatially distributed execution. In contrast
to RISC CPUs, where instructions obtain inputs from a
global set of general-purpose registers, Pasithea instructions
obtain input operands from two fixed local operand registers
opA and opB. Through dataflow TIPs, instructions write

FIGURE 1. Pasithea-1 instruction encoding. Color legend: op/funct codes ,

dataflow TIP , control flow TIP , immediates . Adapted from Kaiser [13, Fig. 1].

their results to operand registers of other instructions. This
way, dataflow TIPs encode the dataflow graph (DFG) of a
fragment in the form of adjacency lists. Additionally, TIPs
encode local control flow in the form of conditional branches.
Fig. 1 summarizes instruction encoding. Instructions con-

sist of a primary instruction word (Fig. 1(a)) with optional
prefix words (Fig. 1(b)). D type instructions produce results
that can be written to other fragment-local operand registers
or used as branch condition. W type instructions, e.g., sw
(store word), do not produce such results. In the primary
D type instruction word, two TIPs can be encoded; two more
TIPs are available through the optional T prefix word.
Each TIP consists of a target address ta, referencing any

instruction within the same fragment, and a target type (tt).
The first TIP (tt1, ta1) is mandatory and can encode either
a conditional branch (control flow TIP) or a write to an
operand register (dataflow TIP). The remaining three TIPs
are optional and can only encode operand register writes.
Instructions also comprise an immediate value for initial-

ization of either opA or opB. Arbitrary 32-bit immediates
are enabled through the I prefix word. When it is absent, the
6-bit immediate of the primary instruction is sign-extended.
Like subroutines, fragments can be invoked multiple times.

Each invocation creates a new fragment instance (FI). FIs
of a particular fragment share the same machine code but
can differ in runtime data (operand register values, control
flow state), enabling reentrancy.
Each FI possesses eight logical message registers through

which it can receive data (such as function arguments or
return values) from other FIs. Every FI is identified by a
unique FI address. By passing messages between FIs, inter-
fragment dataflow and control flow is established.
Table 1 lists all instructions of Pasithea-1, including

new floating-point (FP) instructions. ALU and load/store
instructions borrow basic semantics from RISC-V [30]. FIs
can exchange data words, such as function arguments and
return values, using message passing instructions. To invoke
and terminate FIs, FI management instructions are provided.

B. CONCURRENCY AND EVENT ORDERING
While execution within FIs is sequential, coexisting FIs are
concurrent by default. Microarchitectures are thus free to

VOLUME 5, 2024 3

KAISER et al.: PASITHEA-1: AN ENERGY-EFFICIENT SEQUENTIAL RECONFIGURABLE ARRAY

TABLE 1. Pasithea-1 instruction set overview.

execute coexisting FIs in parallel. Event ordering can be
enforced using send and receive instructions: If the requested
message register is empty, the receiving FI is paused until a
message with the requested identifier is received.
When an FI is used as subroutine, the newly created

callee FI initially waits for argument values. Later, the caller
FI waits for a return message from the callee FI before
continuing. This message serves as completion indicator and
also transmits the return value, where applicable.
In this work, all fragments are subroutines, and thus all

FIs are subroutine calls. We have previously demonstrated
the possibility of using FIs as coroutines or lightweight
threads [13]. To reconcile these inherent multithreading
capabilities with high-level language constructs and code
generation, further research is needed.

C. BASE MICROARCHITECTURE
Fig. 2 shows the microarchitecture of Pasithea-1. A 2 × 4
array of tiles makes up the CGRA fabric. Each tile comprises
16 processing elements (PEs), each serving one instruction.
A fragment of 16 or fewer instructions can be loaded into a
single tile. For fragments of up to 32/64 instructions, 2/4-tile
groups are formed from adjacent tiles as shown in Fig. 2(a).

The S bus connects PEs among each other and to the tile
interface node (TIN). T links connect S buses of adjacent
tiles if they are part of the same large fragment (> 16
instructions). At its core, the S bus is a 32-bit data bus with
additional control signals that is used to (1) load instructions
into PEs, (2) send results from PEs to operand registers of
other PEs, (3) invoke/terminate FIs or send/receive messages
through the TIN, (4) perform load/store operations through
the TIN, (5) evict FI runtime state to memory or restore FI
runtime state from memory and (6) locally coordinate control
flow using a network of execute-enable signals. Using these
execute-enable signals, a control flow token is passed around
among PEs and the TIN. This mechanism fulfills the task of
the CPU program counter in a spatially distributed manner.
Each PE, shown in Fig. 2(c), contains two operand

registers, opA and opB, and an instruction register (IR) for
a primary instruction word and optional I and T prefixes.
IR, opA and opB are written through the S bus. Execution
is triggered by an incoming execute-enable signal of the
S bus. The control unit, implemented as finite state machine
(FSM), coordinates the process of execution. For load/store,
message passing and FI management instructions, this
includes communication with the TIN. Upon completion,
the PE uses the S bus to write the result word to operand

FIGURE 2. Pasithea-1 microarchitecture. No FPU is present in the base
microarchitecture. FPUa/b/c are mutually exclusive. Adapted from Kaiser [14, Fig. 1].

registers of other PEs, as requested by its TIPs. Concurrently,
the control unit hands control flow over to either the next
instruction in sequence or to a branch target, in case a control
flow TIP is present and the encoded branch condition is
satisfied.
The M bus connects all tiles, the memory controller and

the fragment instance manager (FIM). In addition to FI-to-
FI communication, the M bus fulfills load/store operations,
transfers machine code from memory to fabric and is used for
evict/restore operations. The TIN is situated between M bus
and S bus and manages execution of the FI contained in a tile
or linked tile group through an FSM. The TIN also contains
the eight message registers for inter-FI communication.
When an FI terminates, its machine code remains loaded

as a residual fragment. Subsequent fragment invocations
can reuse such residual fragments, enabling instruction reuse
across subroutine calls. A least-recently-used (LRU) queue
of residual fragments is maintained in hardware.
FIs in memory: Only a limited number of FIs can reside

concurrently in fabric (e.g., eight 16-instruction FIs, two
64-instruction FIs or combinations thereof). To hide this
hardware limitation and allow greater numbers of FIs to
coexist logically (e.g., for call stacks whose depth exceeds
fabric capacity), FIs can be moved from fabric to SRAM
(evict) and back from SRAM to fabric (restore). Up to 254
FIs can be evicted to memory. Throughout the evict/restore
process, FIs retain their unique addresses and the ability to
receive messages for later processing.
The FIM supervises FI invocation, instruction fetching

and FI termination. Furthermore, it initiates and coordinates
the FI evict and restore processes: When all FIs in fabric
are waiting for messages, the FIM detects a stall condition

4 VOLUME 5, 2024

and initiates a multi-step unstall procedure, at the end of
which the next pending FI from the ready queue is restored
to fabric. In many instances, some fabric space must be
freed before restoring. For this purpose, residual fragments
are firstly cleared in LRU order. Secondly, when no residual
fragments are present, waiting FIs are evicted in LRU order.
FIs are only evicted while waiting for a message. If a

message is sent to an evicted FI, the FIM delivers it to its
memory representation. If the message index is equal to the
index that the FI is waiting for, the FI is added to the ready
queue. If no fabric space is available for a new FI at time of
invocation, the new FI is created in memory and immediately
added to the ready queue.
The ready queue and a pool of unused FI addresses for off-

fabric FI creation are maintained as linked lists in memory.
Notably, the evict/restore processes are logically hidden

from the executed program (transparency). This makes it
possible to add or remove hardware tiles while maintaining
full machine code compatibility (ISA/µarch decoupling).

The memory controller connects the SRAM to the M bus
for loads, stores and instruction fetching. It includes a 32B
instruction buffer and a 4×32B fully-associative data cache
with LRU replacement policy. Through the front-side bus
(FSB), the memory controller provides character I/O and an
external memory interface.

D. INTERCONNECT EXPLORATION
The S bus enables PE-PE and PE-TIN communication within
a tile or a linked tile group. It is logically flat and fully
combinational. To optimize its dynamic energy, the average
switched capacitance per data transfer must be minimized.
We approach this by inserting conditional switches to reduce
propagation of signals to unaffected S bus endpoints. Three
types of topologies are evaluated, shown in Fig. 3:

1) The Base microarchitecture uses the flat shared bus
topology depicted in Fig. 3(a). Within 2/4-tile groups,
the switches located before the right and left T link
outputs confine data propagation to tiles affected by
the current bus operation. Furthermore, they prevent
propagation of signals between tiles that are not part
of the same FI.

2) The Split-N topologies reduce signal propagation by
splitting PEs of a tile into N groups. These PE
groups, TIN, and T link interfaces left and right are
interconnected using a single-stage crossbar switch.
Fig. 3(b) shows the Split-2 topology as an example of
this. Switches for unused paths such as TIN→TIN or
left→left are omitted. Design variants Split-1 (most
similar to Base), Split-2, Split-4, Split-8 and Split-16
(one switch per PE) have been implemented.

3) The Omega logarithmic interconnect is shown in
Fig. 3(c). Its topology was pioneered in the context of
array processors [31]. A multi-stage switch network
restricts signal propagation to paths needed for the
present bus operation. Even though each stage adds

FIGURE 3. Interconnect topologies used in S bus design exploration. Switch units
propagate inputs conditionally (based on destination addresses); concentrator units
propagate inputs unconditionally.

switching and control overhead, an overall activity
reduction is possible due to the low fan-out per switch.

In each of these networks, PE-to-PE paths within a tile
have uniform lengths (number of traversed switches), which
balances combinational paths to meet timing requirements.
Networks with unbalanced path lengths, e.g., mesh, torus
or ring topologies, were not explored due to the timing
drawbacks of their longest combinational paths and their
need for more complex control logic.
All design variants share the same underlying instruction

set and require no machine code modification (ISA/µarch
decoupling).

E. FLOATING-POINT EXTENSION
Many applications, e.g., in signal processing, machine
learning or computer graphics, rely on floating-point (FP)
math. To enable fast FP operations, Pasithea’s instruction set
is extended by a set of FP instructions, shown in Table 1. The
FP instructions use the IEEE 754 single-precision format and
share the registers opA and opB with integer instructions.
In accord with the base instruction set, all PEs must

support the FP instructions. Hardware floating-point units
(FPUs) are significantly larger and more complex than
integer ALUs. Hence, how they are integrated matters for
power, performance and area. Three FPU integration variants
are proposed, named by their number of FPUs per tile:

1) FPU-1 adds a single FPU per tile by connecting it to
the TIN, shown as FPUa in Fig. 2(b). Multiple S bus
cycles are needed to complete FPU operations.

VOLUME 5, 2024 5

KAISER et al.: PASITHEA-1: AN ENERGY-EFFICIENT SEQUENTIAL RECONFIGURABLE ARRAY

FIGURE 4. Die micrograph of the 8-tile CGRA demonstrator with layout view overlay.
Area is 1228 µm × 608 µm, excluding I/O ring and pads. Reprinted from Kaiser
[14, Fig. 2].

2) In FPU-4, groups of four PEs each share one FPU,
leading to four PEs per tile. This is depicted as FPUb
in Fig. 2(b). Bypassing the S bus, a single clock cycle
suffices to apply FP operands and obtain the result.

3) FPU-16 equips each PE with one FPU, leading to 16
PEs per tile. This is shown as FPUc in Fig. 2(c).

All three FPU variants utilize a fully combinational FPU
design, which comprises an adder, multiplier, special number
handler and a rounding unit.
Despite their microarchitectural differences, all three FPU

variants implement the identical underlying instruction set
(ISA/µarch decoupling).

IV. PHYSICAL DESIGN & SILICON PROTOTYPE
A. SILICON PROTOTYPE
A silicon prototype of the base microarchitecture without
FPU, with flat shared S bus and 256 kB SRAM was suc-
cessfully fabricated [14] in GlobalFoundries 22 nm FD-SOI
CMOS [32]. The die is shown in Fig. 4.

Its core area, including SRAM but excluding I/O, amounts
to 0.75mm2. Considering only tile and top-level logic area,
the prototype attains a fabric density of 437 PEs/mm2.

Compared to a CPU core of equal capabilities, Pasithea
utilizes more logic area but exhibits significantly less
switching activity per logic area. Leakage power is thus
of great concern. To ensure that leakage contributions do
not nullify savings in dynamic energy, core logic was
implemented with ultra-low-leakage (ULL) standard cells,
which use ultra-high threshold voltage transistors and 28 nm
gate-length biasing.
Synopsys Design Compiler and IC Compiler II were used

for synthesis and place-and-route. To reduce tool runtime,
a bottom-up hierarchical design flow was used, in which
the tile was implemented as a separate unit in synthesis and
layout. On top level, eight identical tiles were instantiated.
Sign-off was completed for a nominal VDD of 0.8V using

the RC-extracted design with metal fill and parametric on-
chip variation (POCV) cell models. Corners of 0.76V to
0.88V, −40 ◦C to 125 ◦C, fast and slow process and RC
corners were applied. Additional hold margins and transition
times constraints were specified to facilitate operation at VDD
below 0.76V.

The design comprises a total of 34.2k flip-flops, of which
only a small fraction is toggled in any given clock cycle.
Clock gates were manually inserted at various points in
the design hierarchy to limit switching to active parts of
the design and restrict clock propagation to relevant clock
subtrees. In total, the design uses 500 clock gating cells.

B. EXPLORATORY DESIGN VARIANTS
An exploratory design flow was used to implement and
evaluate the proposed floating-point and interconnect vari-
ants. It differs from the silicon prototype’s design flow
in following aspects: I/Os, pad cells and JTAG TAP were
removed to simplify simulation. To accommodate additional
FPU and S bus logic, the floorplan was enlarged. Relaxed
timing margins and transition time constraints were applied
to reduce tool runtime.
Using this design flow, the following ten separate design

variants were implemented and simulated: Split-1, Split-2,
Split-4, Split-8, Split-16, Omega, FPU-1, FPU-4, FPU-16,
Base (reimplemented as reference for comparisons).

C. RISC REFERENCE SYSTEM
To compare the architecture against energy-efficient embed-
ded CPUs, a single-core reference system based on Ibex [33],
an open-source 32-bit RISC-V CPU, was implemented.
The selected configuration of Ibex supports the RV32IMC
instruction set with 3-cycle multiplication.
This reference system was implemented using the same

design flow as the Pasithea-1 exploratory design variants,
identical technology, standard cell library and SRAM macro.
At the SRAM interface, the reference system uses the same
32B instruction buffer and 4×32B data cache as Pasithea-1.

V. CODE GENERATION
While Pasithea’s instruction set exposes spatial dataflow and
control flow, it is also designed to minimize the effort of
code generation [14]: Similarly to a CPU, it uses sequential
control flow and provides conditional branches. This enables
arbitrary control flow structures, such as nested loops and
conditionals. In contrast to architectures that differentiate
PEs into different types for specific purposes (e.g., memory
access PE, ALU PE), all PEs are functionally equivalent.
Based on this, instructions in a fragment can be mapped to
dedicated PEs (one instruction per PE) in simple control
flow order. Using dataflow TIPs and the logically flat
S bus, all PEs/instructions within a fragment can freely
communicate, without the need for complex routing at
compile time.
Exploiting these characteristics, a C compiler back-

end for Pasithea based on LLVM [34] (version 15.0.6)
was implemented [14] and is used in this work for
compiling benchmark code. It leverages LLVM’s exist-
ing frontend, middle-end and RISC-V instruction selection
passes and compiles LLVM’s machine intermediate rep-
resentation (MIR) to Pasithea’s intermediate assembly-like

6 VOLUME 5, 2024

FIGURE 5. Code generation example. Color legend: op/funct codes , dataflow , control flow , immediates . Adapted from Kaiser [14, Fig. 3].

language (IAL). IAL exposes only available CGRA prim-
itives (instructions) and represents dataflow using virtual
registers. In a final step, IAL is translated to machine
code.
The custom MIR-to-IAL code generation is similar to

CPU code generation. It leverages conventional dataflow
analysis and includes: opcode translation; redistribution
and simplification of immediate operands; lowering of
function calls, argument reads and return value writes;
SSA elimination; constant and copy propagation; fusion
of add-loads, add-stores and assignment-branches where
possible; dead and redundant code elimination. For the
subsequent translation of IAL to machine code, dataflow is
analyzed once more to derive dataflow TIPs, as described
in [13]. For IAL instructions that require more than
four TIPs, supplemental copy machine instructions are
inserted.
Fig. 5 shows code generation for a small example function

in C. The IAL code uses virtual registers ($v. . .), which
are subsequently resolved to dataflow TIPs. The caller FI
address is received as $v14 (instr. 0) and is used to send the
return value L ($v5) back to the caller (instr. 8). Instruction 1
assigns the function argument y to $v7 and furthermore
branches to L3 if y equals zero. Instructions 2 and 3 initialize
C variables a and d. Instructions 4–7 implement the while
loop. In the shown example, no instruction has more than two
TIPs or immediate operands exceeding six bits. Therefore,
no instruction prefix words are used.
This TIP-based dataflow can be characterized as static

single use (SSU), as operand registers are used (read)
exclusively by their individual associated instruction but
can be assigned (written) by any fragment-local instruc-
tion. In earlier literature, SSU form is used for code
optimization [35].
Present usability limitations: Currently, each C function

is translated to a single code fragment, which means that
functions cannot exceed 64 instructions. Large functions
must therefore be manually divided into smaller functions
in C code. A more comprehensive compiler should perform
this step automatically. Furthermore, as Pasithea’s call stack
differs from a typical CPU call stack, non-static local
variables can currently only be allocated in operand registers,
not in stack memory.

VI. EXPERIMENTAL METHODS
A. BENCHMARKS
To evaluate performance and energy efficiency, the following
14 general-purpose benchmarks, implemented in C, are
run on both Pasithea and the RISC reference system:
Euclid’s algorithm, Stein’s algorithm, square root by lin-
ear search (shown in Fig. 5), CRC32 checksum, MD5
cryptographic hash, treesort, quicksort, heapsort, the Wagner-
Fisher algorithm for Levenshtein distance [36], Huffman
compression [36], Hume-Sunday string search [36], a finite
impulse response filter (FIR) [36], Dijkstra’s algorithm [36],
and a conflict driven boolean satisfiability (SAT) solver [37].
C sources were manually adapted to work around mentioned
limitations of the C compiler.
These benchmarks were selected to vary in code com-

plexity, locality of control and dataflow, call stack usage
and load/store behavior. They exclude FP operations and
focus on algorithms without multiplication or division, which
Pasithea does not natively support. Exceptions are FIR and
Dijkstra, for which mul/div are emulated using shift-and-add
subroutines on Pasithea.
Further programs were included to evaluate specific

system functions in isolation. Nop and xor loops across
one or two tiles were used to evoke minimal and maximal
S bus activity. The memory subsystem was assessed using
load/store hit/miss loops.
To evaluate the floating-point extension and design vari-

ants, CORDIC cosine and matrix multiplication programs
were implemented in IAL.
All programs are run in loops, making full use of filled

caches and reusing residual code fragments in fabric.

B. SIMULATION
Using Siemens Questa, timing-annotated post-layout netlist
simulations were performed for the Pasithea-1 silicon design,
the exploratory design variants, and the RISC reference
system. Generated VCD activity vectors were subsequently
used in time-based power analysis with Synopsys PrimeTime
at nominal operating conditions (VDD = 0.8V), including
RC parasitics from layout with metal fill.
To investigate factors underlying switching activity in both

Pasithea and the RISC reference system, execution traces
and event counts were recorded for both platforms.

VOLUME 5, 2024 7

KAISER et al.: PASITHEA-1: AN ENERGY-EFFICIENT SEQUENTIAL RECONFIGURABLE ARRAY

2.53 pJ @ 0.59 V
3.93 pJ @ 0.80 V

0

2.5

5

7.5

10

0.5 0.6 0.7 0.8 0.9

VDD (V)

E
cy

cl
e

(p
J)

Dynamic energy Leakage energy Total energy

5.3 MHz @ 0.59 V

55.0 MHz @ 0.80 V

0

25

50

75

0.5 0.6 0.7 0.8 0.9

VDD (V)

f c
lk

,m
ax

 (
M

H
z)

FIGURE 6. VDD sweep measurement results for execution of heapsort .

C. MEASUREMENT
The silicon prototype was connected to a Xilinx Artix
7 FPGA for dynamic clock generation, programming and
verification of execution results. A Keithley 236 source
measure unit was used to provide the core supply voltage
VDD and measure the supply current. For each benchmark
and VDD, the maximum error-free clock frequency fclk,max
and the supply current were recorded.

VII. RESULTS
A. SILICON PROTOTYPE
Measurements of energy and fclk,max for execution of
heapsort are shown in Fig. 6. Its minimum energy point
(MEP), VDD = 0.59V, and nominal operating point, VDD =
0.8V, are highlighted. fclk,max was found to vary significantly
between benchmarks. As a result of program-dependent
switching activity and fclk,max, the MEP varies between
VDD = 0.57V and 0.61V across benchmarks.
Reliable operation for all benchmarks was observed

between 0.51V to 0.9V at room temperature. For some
benchmarks, correct operation was maintained down to
0.42V.
Fig. 7 shows dynamic energy measurements for each

benchmark. The measured values are compared to sim-
ulation results. Results from simulation of the fabricated
design match the measurement results closely (simula-
tion/measurement ratios yielding geom. mean = 1.02 and
geom. std. dev. = 1.06).
Energy figures from base microarchitecture simulation

using the exploratory design flow yielded systematically
lower power figures than the silicon measurements (geom.
mean = 0.83, geom. std. dev. = 1.13), due to the
relaxed timing margins and transition time constraints.
To account for this, exploratory design variants are sub-
sequently only compared to other exploratory design
variants.

nops_2tile
nops_1tile

sqrt
euclid

stein
fir

heapsort
crc32

dijkstra
ldhit
tsort

huffbench
xors_1tile

qsort
stringsearch

sat
levenshtein

md5
sthit

xors_2tile
ldmiss
stmiss

0 2 4 6 8 10 12 14 16 18

Dynamic energy (W/MHz)

 Silicon
measurement

Silicon
simulation

Exploratory base
design simulation

FIGURE 7. Measured and simulated dynamic energy during benchmark execution,
at VDD = 0.8 V.

0
.9 1
.0 1
.0

1
.0 1
.1

3
.4

1
.2

2
.3

1
.4 1
.5

2
.7

1
.0 1
.2 1
.3

0

1

2

3

4

sq
rt

cr
c3

2

st
ei

n

eu
cl

id

ts
o
rt

h
u
ff

b
en

ch

h
ea

p
so

rt

st
ri

n
g
se

ar
ch

m
d
5

le
v
en

sh
te

in sa
t

q
so

rt fi
r

d
ij

k
st

ra

C
o
m

p
il

e
ti

m
e

(s
)

C code to IAL IAL to machine code

FIGURE 8. Benchmark compile times (C to Pasithea machine code) on an Intel Core
i5-1135G7 machine.

B. BENCHMARK RESULTS
In the following, for mean values across benchmarks, the
geometric mean is used.
Fig. 8 shows compile times of the C benchmarks. The

mean compile time over benchmarks is 1.4 s.
At MEP, a mean energy efficiency of 171 MIPS/mW

and a peak energy efficiency (sqrt) of 601 MIPS/mW were
measured. At 0.9V, a mean performance of 44 MIPS and a
peak performance (sqrt) of 148 MIPS were measured.

Fig. 9 shows relative dynamic energy and performance
of Pasithea-1 in comparison to the RISC reference system.
Benchmarks are sorted by energy efficiency. In 12 bench-
marks, Pasithea-1 surpasses the reference system in energy
efficiency, while exhibiting lower energy efficiency for fir
and dijkstra. Lower performances in Fig. 9(b), equalling
greater execution times, coincide with greater energies in
Fig. 9(a). Considerable reductions in SRAM energy due
to instruction reuse are seen in all benchmarks except
for dijkstra. The contributions marked as “other” reflect
activity of the M bus, FIM and memory controller. For
the reference system, “other” comprises only the memory
controller.
Excluding benchmarks fir and dijkstra, Pasithea-1 pro-

vides a 2.24× higher energy efficiency at 1.71× higher
execution time relative to the RISC reference system.

8 VOLUME 5, 2024

0
.1

8

0
.2

1

0
.2

5

0
.3

1

0
.3

6

0
.4

6

0
.4

6

0
.5

2

0
.7

0

0
.8

7

0
.8

8

0
.9

8

2
.0

4

2
.2

1

sq
rt

cr
c3

2

st
ei

n

eu
cl

id

ts
o

rt

h
u

ff
b

en
ch

h
ea

p
so

rt

st
ri

n
g

se
ar

ch

m
d
5

le
v
en

sh
te

in sa
t

q
so

rt fi
r

d
ij

k
st

ra

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

al
iz

ed
d
y
n
am

ic
 e

n
er

g
y

Pasithea Ref. Tiles/CPU SRAM Other

1
.4

7

1
.0

1

0
.8

6

0
.5

1

0
.6

1

0
.5

9

0
.5

6

0
.5

7

0
.5

3

0
.3

9

0
.3

6

0
.2

8

0
.1

4

0
.1

3
0.0

0.5

1.0

1.5

2.0

sq
rt

cr
c3

2

st
ei

n

eu
cl

id

ts
o

rt

h
u

ff
b

en
ch

h
ea

p
so

rt

st
ri

n
g

se
ar

ch

m
d
5

le
v
en

sh
te

in sa
t

q
so

rt fi
r

d
ij

k
st

ra

N
o
rm

al
iz

ed
p
er

fo
rm

an
ce

FIGURE 9. Performance and energy of Pasithea-1, normalized to RISC reference
system, simulation results.

Including all benchmarks, energy efficiency is on average
1.80× higher with a 2.11× higher execution time.

C. FACTORS DETERMINING ENERGY EFFICIENCY
Fig. 9 shows that programs benefit from CGRA execution
to varying degrees: While for some programs energy is
reduced by up to 5.6× (sqrt), others run less efficiently than
on the reference CPU (fir, dijkstra). To understand what
makes programs particularly energy efficient or inefficient on
Pasithea, event counts from dynamic program analysis were
analyzed. It was found that the major differences in energy
efficiency can be explained by the quantities fetch rate,
load/store rate, management rate and relative instruction
count, which are visualized in Fig. 10 alongside normalized
energy. In the following, we define these four quantities and
trace them back to program characteristics.
The fetch rate is defined as instruction words fetched

per executed instruction. Low fetch rates indicate frequent
instruction reuse, which can be attributed to high instruction
locality. The benchmarks sqrt, crc32, stein, euclid, tsort
and heapsort exhibit fetch rates of zero. This means that
their code fits into fabric completely, allowing subsequent
loop iterations to fully reuse residual fragments and forgo
all instruction fetching. As instruction fetching uses energy,
higher fetch rates correspond to higher energy use.
Another energy overhead comes from evict/restore oper-

ations, which are initiated by the FIM. The management
rate reports the number of FIM-initiated memory accesses
per executed instruction. The benchmarks sqrt, crc32, stein,
euclid, tsort, huffbench and heapsort exhibit management

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.00 0.00

0.00

0.00
0.00

0.000.01

0.01

0.02

0.02

0.02

0.03

0.04
0.04

0.05 0.05

0.06

0.06

0.07

0.07
0.07

0.10

0.12

0.17

0.18

0.18 0.20

0.21

0.24
0.25

0.25

0.26

0.27

0.28

0.29

0.31
0.36
0.46
0.46
0.52
0.70
0.87
0.88

0.93

0.95

0.98

1.00

1.06

1.11
1.14

1.15

1.23

1.26

1.32

1.57

1.90

2.04
2.21 3.74

6.50

sqrt

crc32

stein

euclid

tsort

huffbench

heapsort

stringsearch

md5

levenshtein

sat

qsort

fir

dijkstra

Normalized
Energy

Fetch
Rate

Load/Store
Rate

Mgmt.
Rate

Rel. Instr.
Count

FIGURE 10. Benchmarks sorted by normalized energy with quantities from dynamic
program analysis. Values are colored by rank in column.

rates of zero, indicating that no evict/restore operations are
performed. Fig. 10 shows that greater management rates are
associated with greater normalized energies. Such increased
management rates are caused by frequent deeply nested
function calls. For example, the recursive qsort incurs a
particularly high management rate (0.20).
The load/store rate quantifies the number of load/store

instructions per executed instruction. High load/store rates
are found to increase normalized energy, as memory requests
and responses must travel long paths through S bus and
M bus. The benchmarks sqrt, crc32, stein, euclid and fir
perform comparatively few load/store operations (load/store
rates below 0.04), which positively affects their energy use.
The sorting algorithms tsort, heapsort and qsort exhibit
among the highest load/store rates (0.24–0.27), due to
frequent comparison and swapping of array elements.
Lastly, the relative instruction count quantifies the num-

ber of executed instructions on Pasithea relative to the
reference system. Greater relative instruction counts are
found to increase energy use. The benchmarks fir and dijkstra
are found to have the highest relative instruction counts (6.50
and 3.74). This is due to their use of multiplication and
division, which are emulated with shift-and-add subroutines
due to Pasithea’s lack of native mul/div instructions.
The preceding observations make it possible to propose

measures for further energy reduction: To increase reuse
probabilities of residual fragments and enable deeper nested
calls without evict/restore operations, the number of tiles
could be scaled up. We expect this to reduce fetch and
management rates. Relative instruction counts could be
improved by adding support for missing integer mul/div
operations on PE or tile level. The observed load/store
overhead could be reduced by optimizing the TIN or M bus
or by introducing distributed data caches.

D. INTERCONNECT VARIANTS
The impact of S bus topologies on energy efficiency and area
was explored using the base, Split-1/2/4/8/16 and Omega
design variants. The variants do not differ in performance, as

VOLUME 5, 2024 9

KAISER et al.: PASITHEA-1: AN ENERGY-EFFICIENT SEQUENTIAL RECONFIGURABLE ARRAY

Base
Split−1

Split−2

Split−4

Split−8

Split−16

Omega

0.022

0.023

0.024

0.025

0.85 0.90 0.95 1.00

Norm. non−FP mean
dyn. tile energy

T
il

e
ar

ea
 (

m
m

2
)

Base
FPU−1

FPU−4

FPU−16

0.02

0.04

0.06

1.00 1.05 1.10 1.15

Norm. non−FP mean
dyn. tile energy

T
il

e
ar

ea
 (

m
m

2
)

FIGURE 11. Impact of interconnect design variants (left) and FP design variants
(right) on tile area and dynamic tile energy (mean value across all non-FP
benchmarks, normalized to base variant), simulation results.

0.4

0.6

0.8

1.0

x
o
rs

_
2
ti

le

x
o
rs

_
1
ti

le

st
ri

n
g
se

ar
ch

m
d
5

cr
c3

2

h
ea

p
so

rt

ld
h
it

ld
m

is
s

st
h
it

sq
rt

st
m

is
s

h
u
ff

b
en

ch

ts
o
rt

sa
t

le
v
en

sh
te

in fi
r

eu
cl

id

q
so

rt

st
ei

n

d
ij

k
st

ra

n
o
p
s_

1
ti

le

n
o
p
s_

2
ti

le

N
o
rm

al
iz

ed
d
y
n
.
ti

le
 e

n
er

g
y

Topology Base Split−16 Split−1 Split−2 Split−4 Split−8 Omega

FIGURE 12. Interconnect topology exploration: per-benchmark impact on energy,
normalized to base variant, simulation results.

they exhibit identical cycle timing and used identical clock
constraints for timing closure.
Fig. 11 shows energy and area characteristics of all

variants. The greatest energy reductions are achieved by
Split-4 and Split-8: Both reduce dynamic tile energy by 19%
below base. Of these two, Split-4 has a 4% lower tile area
and can therefore be considered the best overall network.
Compared to Split-4/8, Split-1 and Split-2 have fewer

switches, require less area and use more energy. Their
higher energy use is attributed to broader data propagation
to uninvolved endpoints. Compared to Split-4/8, Omega and
Split-16 use more energy despite having more switches and
requiring more area. This is attributed to the energy overhead
of added switches within the interconnect network.
Fig. 12 shows energy use for each combination of

benchmark and topology. The highest efficiency gains are
realized for xors_1tile and xors_2tile, which synthetically
evoke highest S bus toggling; lowest gains are found for
nops_1tile and nops_2tile, which minimize S bus toggling.

E. FLOATING-POINT VARIANTS
Fig. 13 shows energy and execution time of the FP bench-
marks on the evaluated three design variants FPU-1/4/16.
For the FP benchmarks, FPU-16 exhibits the lowest energy
use. FPU-4 and FPU-1 use more energy, as they share FPUs
among multiple PEs. FPU-4 and FPU-16 exhibit identical
execution times; FPU-1 uses additional cycles for S bus
communication. The execution time and energy differences
between FPU variants are greater for cordic than for matmul,
as it performs FP operations more frequently.

2
.2

7

1
.8

7

1
.3

8

1
.0

1

1
.0

0

1
.0

0

0

1

2

cordic matmul

N
o
rm

.
d
y
n
.

ti
le

 e
n
er

g
y

2
.1

4

1
.3

3

1
.0

0

1
.0

0

1
.0

0

1
.0

0

0

1

2

cordic matmul

N
o
rm

al
iz

ed
ex

ec
u
ti

o
n
 t

im
e

Design

FPU−1

FPU−4

FPU−16

FIGURE 13. Energy use (left) and execution time (right) of FP benchmarks cordic
and matmul, simulation results.

TABLE 2. Comparison of related CGRAs and MCU.

The impact of FPU variants on tile area and energy
use of non-FP benchmarks is depicted in Fig. 11. FPU-1
increases tile area by only 14% over the base architecture,
FPU-4 increases tile area by 72% and FPU-16 by 245%.
Fig. 11 shows that this increase of tile area degrades non-FP
energy efficiency, due to increased wire lengths inside the
tile.
Overall, the optimal choice between FPU-1/4/16 depends

on the application. FPU-16 achieves the highest FP energy
efficiency at the cost of area and non-FP energy efficiency.
FPU-4 offers a more balanced trade-off, requires much less
FPU area and degrades non-FP energy efficiency to a lesser
degree. FPU-1 requires additional cycles and energy for FP
operations but comes with only a minimal area overhead. It
is thus a sensible choice for applications with only infrequent
FP operations.

F. COMPARISON TO RELATED ARCHITECTURES
Table 2 compares Pasithea-1 with recent CGRA architectures
and an ultra-low-power MCU.
Compared to the CGRAs, Pasithea-1 offers significantly

faster code generation (1.4 s mean compile time) and
requires no CPU supervision. With the ability to change
microarchitectural features such as FPU integration variant,

10 VOLUME 5, 2024

interconnect network and number of hardware tiles with-
out breaking machine code compatibility, it demonstrates
decoupling between instruction set and microarchitecture.
With its high energy efficiency and low static power,
Pasithea-1 enables energy reduction in embedded low-power
applications without the software overhead of traditional
CGRAs. Furthermore, its high fabric density enables com-
prehensive instruction reuse even when area is tightly
limited.
Recognizing the high SRAM energy overhead of CPU

instruction fetching, SleepRunner [38] uses a custom ultra-
low-power SRAM as program memory. Further circuit-level
measures including split supply voltages are taken in
SleepRunner to minimize its energy use. Due to its extensive
instruction reuse, Pasithea-1 can surpass such ultra-low-
power MCUs in energy efficiency despite its larger memory
and lack of circuit-level energy optimization.

VIII. CONCLUSION
The presented CGRA architecture Pasithea-1 demonstrates a
novel approach for reconciling energy efficiency advantages
of CGRAs with CPU programmability advantages. It sup-
ports the C programming model and, due to its instruction
set design, allows fast code generation. Using a wide range
of benchmarks, this work showed that Pasithea-1 supports
complex application logic without requiring a CPU for
supervision. By hiding microarchitectural features from the
instruction set, hardware optimizations can proceed without
breaking the existing compiler or machine code. When
instruction set features such as FP operations are added,
backwards compatibility can be maintained.
For 12 of 14 benchmarks, Pasithea-1 surpassed the RISC

reference system in energy efficiency, reducing energy by up
to 5.6×. This is attained through spatial dataflow, with dis-
tributed operand registers supplanting a central register file,
and comprehensive instruction reuse, both within and across
function calls. Its combination of CPU-like programmability,
high energy efficiency, area efficiency (437 PEs/mm2) and
low static power (2.06 µW) makes Pasithea-1 highly suitable
as CPU replacement in small embedded applications that
prioritize energy efficiency, which are particularly common
in the Internet of Things (IoT).
The presented exploration of design variants illustrates

optimization opportunities and tradeoffs in CGRA design
space. Optimized interconnects were able to reduce signal
propagation and increase energy efficiency. The best energy-
area results were achieved with the Split-4 crossbar topology,
demonstrating that a balance must be found between energy
saved by improved signal propagation on the one hand
and the added energy of control structures on the other
hand.
The FPU integration variants show that the level of

hardware resource replication should match the expected
frequency of use to maximize energy efficiency: Highly
replicated hardware units, such as in the FPU-16 variant,

reduce energy when used frequently but can other-
wise increase energy. When FP operations are rarely
used, low replication, such as in the FPU-1 variant, is
energy-optimal.

ACKNOWLEDGMENT
The authors thank GlobalFoundries for technology access
and EUROPRACTICE for providing design tools.

REFERENCES
[1] M. B. Taylor, “A landscape of the new dark silicon design

regime,” IEEE Micro, vol. 33, no. 5, pp. 8–19, Sep. 2013,
doi: 10.1109/MM.2013.90.

[2] M. Wijtvliet, L. Waeijen, and H. Corporaal, “Coarse grained
reconfigurable architectures in the past 25 years: Overview
and classification,” in Proc. Int. Conf. Embed. Comput.
Syst., Archit., Model. Simul. (SAMOS), 2016, pp. 235–244,
doi: 10.1109/samos.2016.7818353.

[3] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
and R. Taylor, “PipeRench: A reconfigurable architecture and
compiler,” Computer, vol. 33, no. 4, pp. 70–77, Apr. 2000,
doi: 10.1109/2.839324.

[4] A. Yeung and J. Rabaey, “A reconfigurable data-driven multiprocessor
architecture for rapid prototyping of high throughput DSP algo-
rithms,” in Proc. 26th Hawaii Int. Conf. Syst. Sci., 1993, pp. 169–178,
doi: 10.1109/hicss.1993.270747.

[5] O. Atak and A. Atalar, “BilRC: An execution triggered coarse
grained reconfigurable architecture,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 7, pp. 1285–1298, Jul. 2013,
doi: 10.1109/tvlsi.2012.2207748.

[6] B. Wang, M. Karunarathne, A. Kulkarni, T. Mitra, and
L.-S. Peh, “HyCUBE: A 0.9 V 26.4 MOPS/mW, 290 pJ/op,
power efficient accelerator for IoT applications,” in Proc. IEEE
Asian Solid-State Circuits Conf. (A-SSCC), 2019, pp. 133–136,
doi: 10.1109/a-sscc47793.2019.9056954.

[7] K. Feng et al., “Amber: A 16-nm system-on-chip with a coarse-
grained reconfigurable array for flexible acceleration of dense linear
algebra,” IEEE J. Solid-State Circuits, vol. 59, no. 3, pp. 947–959,
Mar. 2024, doi: 10.1109/jssc.2023.3313116.

[8] D. Voitsechov, O. Port, and Y. Etsion, “Inter-thread communication
in multithreaded, reconfigurable coarse-grain arrays,” in Proc. 51st
Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), 2018, pp. 42–54,
doi: 10.1109/micro.2018.00013.

[9] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani,
S. C. Goldstein, and M. Budiu, “Tartan: evaluating spatial computation
for whole program execution,” ACM SIGOPS Oper. Syst. Rev., vol. 40,
no. 5, pp. 163–174, Oct. 2006, doi: 10.1145/1168917.1168878.

[10] G. Gobieski et al., “RipTide: A programmable, energy-
minimal dataflow compiler and architecture,” in Proc. 55th
IEEE/ACM Int. Symp. Microarchit. (MICRO), 2022, pp. 546–564,
doi: 10.1109/micro56248.2022.00046.

[11] L. Liu et al., “A survey of coarse-grained reconfigurable architecture
and design,” ACM Comput. Surv., vol. 52, no. 6, pp. 1–39, Nov. 2020,
doi: 10.1145/3357375.

[12] K. J. M. Martin, “Twenty years of automated methods for map-
ping applications on CGRA,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops (IPDPSW), May 2022, pp. 679–686,
doi: 10.1109/ipdpsw55747.2022.00118.

[13] T. Kaiser and F. Gerfers, “Pasithea-1: An energy-efficient self-
contained CGRA with RISC-like ISA,” in Proc. Int. Conf. Archit.
Comput. Syst., 2022, pp. 33–47, doi: 10.1007/978-3-031-21867-5_3.

[14] T. Kaiser and F. Gerfers, “A 2.41-µW/MHz, 437-PE/mm2 CGRA in
22 nm FD-SOI with RISC-like code generation,” in Proc. IEEE Symp.
Low-Power High-Speed Chips Syst. (COOL Chips), 2023, pp. 1–6,
doi: 10.1109/COOLCHIPS57690.2023.10121985.

[15] J. Weng, S. Liu, Z. Wang, V. Dadu, and T. Nowatzki, “A
hybrid systolic-dataflow architecture for inductive matrix algo-
rithms,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), 2020, pp. 703–716, doi: 10.1109/hpca47549.2020.00063.

VOLUME 5, 2024 11

http://dx.doi.org/10.1109/MM.2013.90
http://dx.doi.org/10.1109/samos.2016.7818353
http://dx.doi.org/10.1109/2.839324
http://dx.doi.org/10.1109/hicss.1993.270747
http://dx.doi.org/10.1109/tvlsi.2012.2207748
http://dx.doi.org/10.1109/a-sscc47793.2019.9056954
http://dx.doi.org/10.1109/jssc.2023.3313116
http://dx.doi.org/10.1109/micro.2018.00013
http://dx.doi.org/10.1145/1168917.1168878
http://dx.doi.org/10.1109/micro56248.2022.00046
http://dx.doi.org/10.1145/3357375
http://dx.doi.org/10.1109/ipdpsw55747.2022.00118
http://dx.doi.org/10.1007/978-3-031-21867-5_3
http://dx.doi.org/10.1109/COOLCHIPS57690.2023.10121985
http://dx.doi.org/10.1109/hpca47549.2020.00063

KAISER et al.: PASITHEA-1: AN ENERGY-EFFICIENT SEQUENTIAL RECONFIGURABLE ARRAY

[16] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh,
“HyCUBE: A CGRA with reconfigurable single-cycle multi-hop
interconnect,” in Proc. 54th Annu. Design Autom. Conf., 2017, pp. 1–6,
doi: 10.1145/3061639.3062262.

[17] R. Prabhakar et al., “Plasticine: A reconfigurable architecture for
parallel patterns,” in Proc. 44th Annu. Int. Symp. Comput. Archit.,
2017, pp. 389–402, doi: 10.1145/3079856.3080256.

[18] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW
processor and coarse-grained reconfigurable matrix,” in Proc.
Int. Conf. Field Program. Logic Appl., 2003, pp. 61–70,
doi: 10.1007/978-3-540-45234-8_7.

[19] M. S. S. Govindan, D. Burger, and S. Keckler, “TRIPS: A
distributed explicit data graph execution (EDGE) microproces-
sor,” in Proc. IEEE Hot Chips Symp. (HCS), 2007, pp. 1–13,
doi: 10.1109/HOTCHIPS.2007.7482519.

[20] A. Parashar et al., “Efficient spatial processing element control via
triggered instructions,” IEEE Micro, vol. 34, no. 3, pp. 120–137,
May/Jun. 2014, doi: 10.1109/MM.2014.1.

[21] B. D. Sutter, P. Raghavan, and A. Lambrechts, “Coarse-grained
reconfigurable array architectures,” in Handbook of Signal Processing
Systems, S. S. Bhattacharyya, E. D. F. Deprettere, R. Leupers, and
J. Takala, Eds., Boston, MA: Springer, Sep. 2010, pp. 449–484,
doi: 10.1007/978-1-4419-6345-1.

[22] D. Henry, B. Kuszmaul, and V. Viswanath, “The ultrascalar
processor-an asymptotically scalable superscalar microarchitec-
ture,” in Proc. 20th Anniv. Conf. Adv. Res. VLSI, 1999, pp. 256–273,
doi: 10.1109/ARVLSI.1999.756053.

[23] E. Gunadi and M. H. Lipasti, “CRIB: consolidated rename, issue,
and bypass,” ACM SIGARCH Comput. Archit. News, vol. 39, no. 3,
pp. 23–32, Jun. 2011, doi: 10.1145/2024723.2000068.

[24] D. K. Wang and N. S. Kim, “DiAG: A dataflow-inspired architecture
for general-purpose processors,” in Proc. 26th ACM Int. Conf.
Archit. Support Program. Lang. Oper. Syst. (ASPLOS), Apr. 2021,
pp. 93–106, doi: 10.1145/3445814.3446703.

[25] Arvind and D. E. Culler, “Dataflow architectures,” Annu.
Rev. Comput. Sci., vol. 1, no. 1, pp. 225–253, Jun. 1986,
doi: 10.1146/annurev.cs.01.060186.001301.

[26] A. A. D. Farahani, H. Beitollahi, and M. Fathi, “A dynamic general
accelerator for integer and fixed-point processing,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 28, no. 12, pp. 2509–2517,
Dec. 2020, doi: 10.1109/tvlsi.2020.3023106.

[27] M. Brandalero, L. Carro, A. C. S. Beck, and M. Shafique, “Multi-target
adaptive reconfigurable acceleration for low-power IoT process-
ing,” IEEE Trans. Comput., vol. 70, no. 1, pp. 83–98, Jan. 2021,
doi: 10.1109/TC.2020.2984736.

[28] A. Lambrechts, P. Raghavan, M. Jayapala, B. Mei, F. Catthoor, and
D. Verkest, “Interconnect exploration for energy versus performance
tradeoffs for coarse grained reconfigurable architectures,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 1, pp. 151–155,
Jan. 2009, doi: 10.1109/tvlsi.2008.2002993.

[29] R. Wirsch and C. Hochberger, “Towards transparent dynamic
binary translation from RISC-V to a CGRA,” in Proc.
Int. Conf. Archit. Comput. Syst., 2021, pp. 118–132,
doi: 10.1007/978-3-030-81682-7_8.

[30] A. Waterman and K. Asanović, “The RISC-V instruction set manual,
volume I: User-level ISA, version 2.1,” Dept. Electr. Eng. Comput.
Sci., Univ. California Berkeley, Berkeley, CA, USA, Rep. UCB/EECS-
2016-118, 2019.

[31] D. H. Lawrie, “Access and alignment of data in an array pro-
cessor,” IEEE Trans. Comput., vol. C-24, no. 12, pp. 1145–1155,
Dec. 1975, doi: 10.1109/t-c.1975.224157.

[32] R. Carter et al., “22nm FDSOI technology for emerging mobile,
Internet-of-Things, and RF applications,” in Proc. IEEE Int.
Electron Devices Meeting (IEDM), Dec. 2016, pp. 2.2.1–2.2.4,
doi: 10.1109/IEDM.2016.7838029.

[33] P. D. Schiavone et al., “Slow and steady wins the race? A comparison
of ultra-low-power RISC-V cores for Internet-of-Things applica-
tions,” in Proc. 27th Int. Symp. Power Timing Model. Optim. Simul.
(PATMOS), 2017, pp. 1–8, doi: 10.1109/PATMOS.2017.8106976.

[34] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. Code Gener.
Optim., 2004, pp. 75–86, doi: 10.1109/cgo.2004.1281665.

[35] R. Lo, F. Chow, R. Kennedy, S.-M. Liu, and P. Tu, “Register
promotion by sparse partial redundancy elimination of loads and
stores,” ACM SIGPLAN Notices, vol. 33, no. 5, pp. 26–37, May 1998,
doi: 10.1145/277652.277659.

[36] J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open bench-
marks for energy measurements on embedded platforms,” 2013,
arXiv:1308.5174.

[37] M. Gammelsæter. “Ersatz: A simple, small, work in progress SAT-
solver, written in ANSI C.” Feb. 2024. [Online]. Available: https://
github.com/martingms/ersatz

[38] D. Bol et al., “SleepRunner: A 28-nm FDSOI ULP cortex-M0
MCU with ULL SRAM and UFBR PVT compensation for 2.6–3.6-
uW/DMIPS 40–80-MHz active mode and 131-nW/kB fully retentive
deep-sleep mode,” IEEE J. Solid-State Circuits, vol. 56, no. 7,
pp. 2256–2269, Jul. 2021, doi: 10.1109/JSSC.2021.3056219.

TOBIAS KAISER (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees in
computer engineering from Technische Universität
Berlin, in 2016 and 2017, respectively, where he
is currently pursuing the Doctoral degree.

In 2018, he joined the Mixed Signal Circuit
Design Group, Technische Universität Berlin. His
research interests include energy-efficient proces-
sor design, design automation, and mixed-signal
applications.

ESTHER GOTTSCHALK received the B.Sc. and
M.Sc. degrees in electrical engineering from
Technische Universität Berlin in 2021 and 2024,
respectively.

In 2023, she joined as a Master Thesis Student
with the Mixed Signal Circuit Design Group,
Technische Universität Berlin. She is currently a
Research Assistant with the Fraunhofer Institute
for Telecommunications, Heinrich-Hertz-Institut.
Her research interests include energy-efficient
processor design and mixed-signal applications in
wireless communication.

KAI BIETHAHN received the B.Sc. and M.Sc.
degrees in computer engineering from Technische
Universität Berlin in 2020 and 2024, respectively.

From 2020 to 2024, he worked as a Student
Researcher with the Mixed Signal Circuit Design
Group. His research interests include energy-
efficient architectures, life cycle assessment, and
design automation.

12 VOLUME 5, 2024

http://dx.doi.org/10.1145/3061639.3062262
http://dx.doi.org/10.1145/3079856.3080256
http://dx.doi.org/10.1007/978-3-540-45234-8_7
http://dx.doi.org/10.1109/HOTCHIPS.2007.7482519
http://dx.doi.org/10.1109/MM.2014.1
http://dx.doi.org/10.1007/978-1-4419-6345-1
http://dx.doi.org/10.1109/ARVLSI.1999.756053
http://dx.doi.org/10.1145/2024723.2000068
http://dx.doi.org/10.1145/3445814.3446703
http://dx.doi.org/10.1146/annurev.cs.01.060186.001301
http://dx.doi.org/10.1109/tvlsi.2020.3023106
http://dx.doi.org/10.1109/TC.2020.2984736
http://dx.doi.org/10.1109/tvlsi.2008.2002993
http://dx.doi.org/10.1007/978-3-030-81682-7_8
http://dx.doi.org/10.1109/t-c.1975.224157
http://dx.doi.org/10.1109/IEDM.2016.7838029
http://dx.doi.org/10.1109/PATMOS.2017.8106976
http://dx.doi.org/10.1109/cgo.2004.1281665
http://dx.doi.org/10.1145/277652.277659
http://dx.doi.org/10.1109/JSSC.2021.3056219

FRIEDEL GERFERS (Senior Member, IEEE)
received the Dr.-Ing. degree from the University
of Freiburg, Germany, in 2005.

He has gained his first industrial R&D expe-
rience with Philips Semiconductor, Starnberg,
Germany. In 2006, he joined as a Postdoctoral
Research Fellow working on new types of piezo-
electric MEMS sensors and their readout circuits
with Intel Research, Santa Clara, CA, USA. His
entrepreneurial spirit led him from 2007 to 2011
to the start-up companies Aquantia and Alvand

Technologies, CA, USA. In the role of a Technical Director, he led the
mixed-signal departments, which were crucial for the successful market
positioning of these companies in the field of high-speed data transmission
systems that operate close to the Shannon limit. In 2009, he founded the
technology startup, NiederRhein Technologies, Mountain View, CA, USA.
More recently, he was responsible for the worldwide development of high-
precision data-converters for Integrated Device Technology, San José, CA,
USA. The team was later in 2014 acquired by Apple Inc., Cupertino,
CA, USA. Since 2015, he has been a Full Professor with the Technische
Universität Berlin, Germany, where he is currently the Director and the Head
of the “Mixed Signal Circuit Design” Chair. In 2018, he co-founded IC4X
GmbH, Berlin, which specializes in the development of high-performance
analog and mixed-signal circuits and systems. He is currently a member
of the Scientific Advisory Board of the Leibniz Institutes – Innovations
for High Performance Microelectronics and the Ferdinand Braun Institute,
and of the Research Fab Microelectronics Germany. He is co-author of the
book Continuous-Time Sigma-Delta A/D Conversion, Fundamentals, Error
Correction and Robust Implementations. In addition, he has authored or co-
authored several book chapters and holds more than 18 patents. His current
research interests include energy-efficient mixed-signal integrated circuit
design, self-correcting and reconfigurable analogue circuits, and high-speed
and high-performance data converters for wireless, wireline and optical
communications systems.

Dr. Gerfers was awarded the Einstein-Professorship for Mixed Signal
Circuit Design from the Einstein Foundation in 2019. He is currently a
member of the Technical Program Committee of IEEE Custom Integrated
Circuits Conference, IEEE European Solid-State Devices and Circuits
Conference, European Microwave Week, and Optical Fiber Communication
Conference. He was a Guest Editor of IEEE JOURNAL OF SOLID-STATE
CIRCUITS in 2021.

VOLUME 5, 2024 13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

