
This paper has been accepted for publication as: T. Kaiser and F. Gerfers, “A 2.41-µW/MHz, 437-PE/mm² CGRA in 22 nm FD-SOI with RISC-Like Code Generation,” presented at 2023 IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS), Tokyo, Japan, April 2023, doi: 10.1109/COOLCHIPS57690.2023.10121985.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

A 2.41-µW/MHz, 437-PE/mm2 CGRA in 22 nm
FD-SOI With RISC-Like Code Generation

Tobias Kaiser and Friedel Gerfers
Chair of Mixed Signal Circuit Design

Technische Universität Berlin, Germany
Email: kaiser@tu-berlin.de

Abstract—While coarse-grained reconfigurable arrays
(CGRAs) have the potential to improve energy efficiency in
general-purpose computing beyond the limitations of von
Neumann architectures, they suffer from challenges in code
generation. Pasithea-1 is a CGRA architecture that aims to
combine high energy efficiency with RISC-like programmability.
This paper presents its first silicon prototype and a C compiler
that uses conventional CPU compiler techniques. Compared
to code generation for traditional CGRAs, which require
expensive place and route steps, this method of code generation
reduces compile times and compiler complexity significantly.
Performance and power were measured for a set of benchmark
programs written in C. On average, energy efficiency of
195.1 int32 MIPS/mW and active power of 2.41 µW/MHz
were achieved. Peak energy efficiency of 558.2 MIPS/mW and
peak performance of 97.5 MIPS were measured. Load/store
instructions and instruction transfers are identified as critical
factors for energy efficiency in Pasithea. In comparison to an
MCU with state-of-the-art energy efficiency, Pasithea achieves
higher energy efficiency in four of the benchmarked programs.
Switched capacitance per benchmark run was reduced by a
factor of approximately 1.4, on average. Its 0.75 mm2 core area
and fabric density of 437 PEs/mm2 enable use in cost-sensitive
applications and permit further upscaling.

I. INTRODUCTION

Energy efficiency is a key factor in computing: IoT nodes
require improved energy efficiency to accommodate growing
workloads and enable operation with smaller power sources. In
datacenters, higher energy efficiency translates to cost savings
and reduced environmental impact. In the face of thermal
throttling, energy efficiency also determines performance.

Coarse-grained reconfigurable array (CGRA) architectures
might provide a path beyond the energy efficiency limita-
tions of von Neumann processors. Their array elements are
populated with control and data flow primitives of programs
(configuration/instructions). Once an array configuration is
loaded, hardware units can perform their tasks by exchanging
data and control signals. By reusing instructions for multiple
executions, CGRAs require no continuous instruction stream.
This is in contrast to von Neumann processors, where every
instruction execution is preceded by an instruction transfer.

Code generation challenges: While CGRAs have inherent
advantages in performance and energy, they are difficult com-
piler targets in comparison to von Neumann processors [1].
As a result, they have seen little adoption in general-purpose
computing. We highlight six key challenges:

1) Instructions are executed based on parallel data flow
rather than sequential control flow.

2) Only a limited set of control flow patterns is supported.
3) Per-cycle time-multiplexing of instructions in array ele-

ments give rise to scheduling issues.
4) Functionally different array elements are provided for

different purposes, introducing mapping and placement
problems.

5) Data flow between array elements is constrained, neces-
sitating the use of routing algorithms at compile time.

6) Low-level bitstreams are used for programming, inhibit-
ing portability across CGRA microarchitectures.

The degree to which those aspects apply varies between
architectures. RipTide [2] is a recent general-purpose CGRA
that emphasizes energy efficiency as well as programmability.
It provides primitives for arbitrary control flow (challenge 2)
and forgoes per-cycle time-multiplexing (challenge 3). In spite
of this, it depends on either SAT solving or integer linear
programming for code generation; simple C programs thus
take several minutes to compile.

DiAG [3] is a CGRA / von Neumann hybrid that runs
RISC-V code instead of a custom bitstream, dynamically
constructing hardware datapaths from instruction sequences.
This makes code generation easy but leads to a mismatch
between hardware and instruction set, imposing penalties in
performance, power and area: Dataflow mediated by general-
purpose registers is mapped to hardware using area-intensive
register lanes. Furthermore, hardware-inherent locality restric-
tions of data and control flow are not accounted for by the
ISA and thus must be hidden by hardware.

In [4], we proposed Pasithea-1, a CGRA with an ISA based
on RISC principles optimized for execution in a spatial array.

Contributions of this paper: In this paper, we present
the first silicon prototype of Pasithea. While the architecture
was previously programmed in an assembly-like language,
this paper demonstrates a simple C compiler that uses CPU
compiler methods to generate Pasithea machine code. From
measurements, performance and energy efficiency is evaluated
on program and instruction level. Results are compared state-
of-the art CGRAs and an ultra-low-power MCU.

Outline: Section II introduces the Pasithea architecture and
links it to the challenges mentioned above. Section III shows
the silicon prototype. Section IV describes code generation.
Section V introduces the benchmarks used for evaluation.

https://doi.org/10.1109/COOLCHIPS57690.2023.10121985

tile

tile tile tile tile

tile tile tile FI
M

JT

AGFSB
ctrl.

PE PE PE PE ...

2×4 tile CGRA fabric

16 PEs / tile 1 instr. / PE

TIN

M
sg

[0
]

M
sg

[1
]

...
M

sg
[7

]

opA

M bus

S bus
opB IR

ALU

PE
ctrl.

receive & send
operands→dataflow PE

-to
-P

E
co

nt
ro

l f
lo

w

in
st

r.
fe

tc
h

32 32 32

dynamic connections
at tile boundaries

D$SR
AM

Fig. 1. Pasithea microarchitecture.

Results are presented in Section VI. Section VII concludes
the paper with a discussion.

II. ARCHITECTURE

This section summarizes the Pasithea-1 architecture, previ-
ously described in [4].

Its ISA is based on RISC principles but is designed specifi-
cally for execution in a spatial array, in contrast to other RISC
ISAs. Compared to typical CGRA architectures, it addresses
all six code generation challenges mentioned in Section I.
Fig. 1 shows the CGRA microarchitecture. Its fabric comprises
2 × 4 tiles, each containing 16 processing elements (PEs).
All PEs support 32-bit integer operations and are functionally
identical, addressing challenge 4. Only one instruction is held
per PE, alleviating challenge 3.

Array hardware inherently restricts locality of dataflow and
control flow. The ISA exposes this by requiring partitioning
of machine code into fragments of up to 64 instructions.

PEs obtain inputs from their local operand registers opA
and opB. Using the S bus, a PE can send its result to operand
registers within the fragment. Up to four target instruction
pointers (TIPs) per instruction can encode such send oper-
ations. This constitutes a static-single use (SSU) encoding
(cf. [5]). With TIPs addressing physical registers directly,
highly efficient spatial point-to-point dataflow is enabled. This
mechanism replaces the central general-purpose register file
found in RISC architectures and addresses challenge 5.

Pasithea is driven by sequential control flow rather than
parallel data flow, addressing challenge 1. A signal network
that is part of the S bus maintains control flow decentrally
instead of using a central program counter. Every instruction
that produces a result can encode a conditional branch using
a special TIP, addressing challenge 2.

Loading code fragments to fabric creates fragment in-
stances (FIs), which encapsulate the execution state of a
fragment. Multiple FIs of a single code fragment can coexist
at runtime. Fragments are used as machine-level functions.
A global entry fragment is instantiated on reset. At runtime,
FIs can be created and terminated using special instructions,

SRAM

I/O ring

top-level logic

til
e

til
e

til
e

til
e

til
etil
e

til
e

til
e

Fig. 2. Die micrograph of the 8-tile CGRA demonstrator with layout view
overlay. Area is 1228 µm× 608 µm, excluding I/O ring and pads.

making function calls possible. After FI termination, machine
code is kept in fabric and is managed in an LRU queue.
On subsequent function calls, such residual machine code is
reused when possible.

The number of FIs that can coexist on fabric is limited (8×
16-instr. FIs or 2×64-instr. FIs or combinations of differently
sized FIs). To decouple maximum call stack depth from array
capacity, FIs can be transferred between fabric and memory.
The current implementation can keep up to 254 FIs in memory.
A central FI manager (FIM) supervises FI creation (including
instruction fetching), termination and their movement between
fabric and memory. It also determines when FIs need to be
moved from fabric to memory (evicted) or from memory to
fabric (restored) based on an LRU queue of idle FIs in fabric
and a second queue of FIs in memory that are ready to resume
processing.

FIs exchange messages via the M bus using their tile
interface nodes (TINs), e.g. for argument and return value
passing. A TIN can receive and buffer up to eight differently
tagged 32-bit message words. Unique FI addresses (FIAs) are
maintained in hardware throughout FI lifetime. Coexisting FIs
are concurrent; message passing is therefore also needed for
event ordering, e.g. to wait for subroutine completion. FIs
enable reentrant subroutines and inter-fragment control and
data flow. This complements intra-fragment control and data
flow based on TIPs.

III. SILICON PROTOTYPE

Pasithea-1 was implemented in GlobalFoundries 22 nm FD-
SOI CMOS [6]. Fig. 2 shows the prototype die.

Due to its high ratio of logic area to switching activity, ultra-
low-leakage (ULL) standard cells with 28 nm gate biasing
were used. Its 0.75mm2 core includes 256 kB SRAM for
program and data and a 4 × 32B data cache. To reduce
switching activity at its 34.2k flip-flops, the design comprises
500 clock gates inserted at different levels in the hierarchy.
The tiles were implemented as physically identical instances
(235 × 141 µm). Including top-level logic overhead, a fabric
density of 437 PEs/mm2 was achieved.

A Xilinx Artix 7 FPGA was used for interfacing and
clock generation. The core voltage VDD was supplied by a

Keithley 236 source measure unit, enabling accurate current
measurements of the system.

IV. CODE GENERATION

To show how code generation is facilitated by the Pasithea-1
ISA, a C compiler based on the LLVM compiler infrastruc-
ture [7] (version 15.0.6) was implemented.

clang translates C code to LLVM IR, which is then further
optimized by the LLVM middle-end (opt). Using LLVM’s
SelectionDAG module, preliminary instruction selection is
then performed for 32-bit RISC-V [8], on which Pasithea’s
instruction set is based. The SSA-form machine intermediate
representation (MIR) is then further processed by a series of
compiler passes implemented in Python:

1) Where required, RISC-V opcodes are translated to Pa-
sithea opcodes; branch instructions are replaced with
regular instructions and special branch TIPs.

2) Offset additions that are part of load and store instruc-
tions are moved into separate add instructions.

3) Function calls are lowered.
4) Argument reads and return value writes are lowered.
5) SSA is eliminated.
6) Constant and copy propagation are performed.
7) Immediate values are simplified and legalized.
8) Where possible, add instructions are combined with

subsequent load or store instructions.
9) Assignments and branches are combined where possible.

10) Dead code and redundant branches are eliminated.
Transformations are based on dataflow analysis. The re-

sulting intermediate assembly-like language (IAL) and its
translation to Pasithea machine code was previously described
in [4]: Based on another step of dataflow analysis, IAL virtual
register assignments are translated to per-instruction sets of
dataflow TIPs: one TIP for each valid use following a virtual
register assignment. Up to four TIPs can be encoded per
instruction. If this does not suffice, additional copy operations
(opcode or) are inserted. Machine code is then assembled.

Fig. 3 shows an example of the described code generation
process for a simple integer square root function. The RISC-V
MIR code contains copy instructions between virtual and
physical registers at places where physical registers are fixed
by the calling convention. Steps 3 (not present in the example)
and 4 eliminate all uses of RISC-V physical registers and adapt
the code to Pasithea’s calling convention, which is described
in [4]. The instruction recv(0, 1) receives the first function
argument by reading message register 1. The return value $v5
is passed back to the caller by the instruction send($v14, 0,
$v5). $v14 is the caller’s FI address. It is used as a message
destination address for the return value. goto L3 ifnot $v7 =
recv(0, 1) is an example where step 9 combined a conditional
branch and an assignment to a single instruction.

It is currently required that C functions / MIR functions
are small enough for the resulting Pasithea fragment not to
exceed the 64-instruction limit. To support arbitrary function
sizes, an additional pass would have to partition large functions
into multiple fragments, minimizing inter-fragment data and

C source code
unsigned sqrt(unsigned y) {

unsigned L = 0, a = 1, d = 3;
while (a <= y) {

a = a + d;
d = d + 2;
L = L + 1;

}
return L;

}

LLVM RISC-V Machine IR (MIR)
bb.0: %7 = COPY $x10

%9 = COPY $x0
%8 = COPY %9
BEQ %7, %9, %bb.3
PseudoBR %bb.1

bb.1: %13 = COPY $x0
%12 = COPY %13
%11 = ADDI $x0, 1
%10 = ADDI $x0, 3

bb.2: %0 = PHI %10, %bb.1, %4, %bb.2
%1 = PHI %11, %bb.1, %3, %bb.2
%2 = PHI %12, %bb.1, %5, %bb.2
%3 = ADD %0, %1
%4 = ADDI %0, 2
%5 = ADDI %2, 1
BGEU %7, %3, %bb.2
PseudoBR %bb.3

bb.3: %6 = PHI %8, %bb.0, %5, %bb.2
$x10 = COPY %6
PseudoRET implicit $x10

Intermediate Assembly-Like Language (IAL)
$v14 = recv(0, 0)
$v5 = 0
goto L3 ifnot $v7 = recv(0, 1)
$v4 = or(3, 0)
$v3 = or(1, 0)
$v5 = 0

L2: $v3 = add($v4, $v3)
$v4 = add($v4, 2)
$v5 = add($v5, 1)
goto L2 ifnot sltu($v7, $v3)

L3: send($v14, 0, $v5)
term()

Pasithea-1 Machine Code
a000000a 40000088 41048748 000c0085 000400c4 060cc7c4
07088485 0704c886 0c000044 20000000 28000000 b0000000

LLVM: clang frontend,
middle-end optimizations,
RISC-V instruction selection

Custom code generation passes

TIP inferrence from dataflow,
assembling

Fig. 3. Compiling example sqrt function from C to CGRA machine code.

control flow. This is known as temporal partitioning in CGRA
compilers [1] and is also employed in CPU compilers to
manage instruction locality and improve code generation [9].

Another limitation is that C local variables must currently
reside in operand registers and can not be allocated on stack.
This could be addressed by either introducing a stack pointer,
passed as additional message between fragments, or by using
heap allocation for this purpose.

V. BENCHMARKS

The following benchmark programs were successfully com-
piled from C code and executed on the Pasithea CGRA: euclid
(Euclid’s gcd algorithm), stein (Stein’s binary gcd algorithm),
crc32 (cyclic redundancy check), md5 (message digest 5),
sqrt (integer square root algorithm shown in Fig. 3), dijkstra
(shortest path search), tsort (tree sort) and qsort (quicksort).

The chosen benchmarks vary in code complexity, locality of
dataflow, the degree to which nested subroutine calls are used
and the number and locality of loads and stores. Algorithms for
which multiplication or division is critical were not included,
as the current prototype does not provide hardware support for
those operations.

The average compile time was 2.1 s across benchmark pro-
grams, which is significantly faster than RipTide’s compiler.

SleepRunner [10], a recent ARM Cortex-M0 based MCU
with state-of-the-art energy efficiency, was selected as bench-
marking reference. To minimize instruction fetch energy, it
uses an ultra-low-power 32-kB 8T SRAM macro, which
reduces access energy 5× compared to a foundry-provided
SRAM of equal size. We compiled our benchmarks for ARM
Cortex-M0 using GCC (version 12.2.1 with -O2) and obtained
cycle counts by running them on a commercial MCU. The cy-
cle counts were then used to estimate energy and performance
of the benchmarks on SleepRunner.

A direct comparison with state-of-the-art CGRAs such as
[2], [11], [12] was not possible, as they were evaluated using
a different set of benchmarks.

VI. RESULTS

The silicon prototype was verified by running a small test
program at different core supply voltages and clock frequen-
cies to verify correct functioning of memory and CGRA fabric.
The test program was executed successfully over a wide VDD

range, from 0.42 V to 0.9 V. Fig. 4 shows maximum operating
frequency and energy use over this supply voltage range. The
minimum energy point (MEP) was found at VDD = 0.58V
and fclk = 5.9MHz.

A. Benchmark Execution

The upper half of Table I shows measurement results for
the benchmark programs at MEP. Measurements were taken
during a continuous loop of program invocations. Residual
code fragments from prior loop iterations are reused to the
degree to which the architecture implements this.

The programs euclid, stein, sqrt, crc32 and tsort fit into
fabric, resulting in zero instruction transfers after the first out-
ermost loop iteration. For dijkstra and md5, not all sequentially

0.5 0.6 0.7 0.8 0.9

20
40
60
80

100

5.9 MHz
@MEP

97.5 MHz
@0.9V

81.4 kHz
@0.42V

VDD (V)

fclk (MHz)

0.5 0.6 0.7 0.8 0.9

1
2
3
4
5

1.78 pJ
@MEP 3.66 pJ

@0.9V

VDD (V)

E/cycle (pJ) static dyn. total

Fig. 4. Maximum operating frequency and energy per cycle over VDD for
test program execution at room temperature.

TABLE I
MEASUREMENT RESULTS FOR PROGRAM EXECUTION ON PASITHEA

CGRA AT MEP AND MACHINE CODE SIZE COMPARISON.

Program µW/MHz CPI MIPS/mW Code Size (B)
this work CM0

euclid 1.78 1.57 357.2 208 96
stein 1.97 1.47 345.7 280 152
sqrt 1.79 1.00 558.2 84 54

crc32 2.48 1.33 303.8 136 88
md5 3.48 2.07 139.0 760 492

dijkstra 2.91 3.43 100.2 980 616
tsort 2.75 3.01 120.7 400 252
qsort 2.64 6.37 59.6 280 112

geom. mean 2.41 2.12 195.1

nops / 1 tile 0.97 1 1025.7
counter / 1 tile 1.39 1 719.3

counter / 2 tiles 1.73 1 579.6
maxtoggle / 1 tile 2.53 1 395.9

maxtoggle / 2 tiles 3.98 1 251.4
load hit 2.64 8 46.6
store hit 3.64 4 68.7

load miss 4.74 9 23.1
store miss 9.69 4 – 6 17.9

invoked code fragments could be held in fabric at the same
time; due to this, parts of the fabric must be reconfigured
on every program invocation, i.e. some instruction fetching
occurs. The performance (CPI) and energy penalty of repeated
instruction fetching is apparent in Table I.

qsort quickly exceeds the fabric’s call stack capacity by
recursively spawning FIs. This triggers expensive evict/restore
operations, which are absent in the other benchmarks. A steep
reduction of CPI and energy efficiency is the result.

The amount and locality of load/store operations also im-

1.
35

1.
33

2.
76

1.
39

0.
62

0.
45 0.
58

0.
34

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.5
1

1.5
2

2.5
3

Reference MCU
This Work

qs
or

t

ts
or

t

di
jk

st
ra

m
d5

cr
c3

2

sq
rt

st
ei

n

eu
cl

id

re
l.

ru
ns

/e
ne

rg
y

Fig. 5. Comparison of energy efficiency (runs/energy) between Pasithea
measurements and reference MCU (SleepRunner) estimates.

0.
89 0.
96

1.
83

1.
27

0.
80

0.
48 0.
59

0.
33

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.5

1

1.5

2

2.5
Reference MCU
This Work

qs
or

t

ts
or

t

di
jk

st
ra

m
d5

cr
c3

2

sq
rt

st
ei

n

eu
cl

id

re
l.

ru
ns

/ti
m

e

Fig. 6. Comparison of performance (runs/time) between Pasithea measure-
ments and reference MCU (SleepRunner) estimates.

pacts performance and energy use significantly. euclid, stein
and sqrt perform no loads or stores. crc32 loads a byte array in
sequence, which increases energy per cycle slightly. dijkstra,
tsort and qsort operate on data structures in memory and thus
have high load/store frequencies. This degrades their energy
efficiency and performance. The same is true for the md5
implementation, whose inner loop utilizes a LUT in memory.

B. Single-Instruction Measurement

To identify limiting factors, we measured performance and
energy for key instructions using special loop test cases
and differential power analysis. Initial instruction fetching is
excluded. Results are shown in the lower half of Table I.

The nop instructions only pass control to the next PE in
sequence and encode no data transfers via the S bus. Their
energy efficiency of 1025.7MIPS/mW can be interpreted as
the architecture’s upper efficiency bound. In the counter test,
some nops were replaced by incrementing add instructions
that transmit their results using the S bus. Table I shows the
corresponding increase of energy use for an individual add
instruction. The maxtoggle test measures a xor instruction
toggling all input operand bits. This causes energy to rise
substantially, showing the impact of data-dependent S bus
activity on energy efficiency.

Furthermore, energy use and performance of load/store
instructions were measured. Table I shows that loads and stores
are highly expensive in terms of energy use and performance
in the implemented architecture. This is due to two factors:
Firstly, all load and store requests are forwarded from originat-

ing PEs through S bus, TIN and M bus to the data cache. This
requires time and switching energy. Secondly, with 18 pJ for a
256-bit read and 21 pJ for a write access, SRAM access cycles
use ∼ 8× more energy than clock cycles without SRAM
access.

C. Static Power Dissipation

At VDD = 0.8V, a static power of 8.16 µW was measured.
At VDD = 0.58V (MEP), measured static power was 2.06 µW.
According to characterization data, 58% of static power is
dissipated by the SRAM macro.

D. Comparison with MCU

Figs. 5 and 6 compare energy efficiency and performance
between measurement results from Pasithea and SleepRunner
estimations.

Fig. 5 shows that Pasithea exceeds SleepRunner in effi-
ciency when only few memory accesses are performed and
instruction reuse manages to keep the number of instruction
fetches small. In cases where memory accesses are frequent
(md5, dijkstra, tsort, qsort), performance drops at least slightly
below that of the reference MCU. For qsort, FI evict/restore
operations aggravate this drop in efficiency.

The same effects also impact performance, as shown in
Fig. 6. In cases where memory access frequency is low, relative
energy efficiency is higher than the corresponding relative
performance.

For sqrt, the large differences in performance and energy
between Pasithea and SleepRunner are due to GCC produc-
ing suboptimal ARM code for that particular program (two
branches per loop iteration).

The code sizes in Table I show that Pasithea machine code
is approximately 1.76× larger than ARM Cortex-M0 machine
code, which achieves extraordinary high code densities by
exclusively using 16-bit instruction encoding. Pasithea, on the
other hand, uses 32-bit instructions that are extended by up
to two 32-bit prefix words for greater immediate ranges and
additional TIPs. Fragment start and end markers, and unused
TIP and immediate fields contribute to Pasithea’s lower code
density. We speculate that dataflow encoding using TIPs is also
inherently less compact than dataflow encoding using GPRs.

VII. DISCUSSION

Table II compares Pasithea-1 with SleepRunner and three
state-of-the-art CGRAs. For peak performance and peak en-
ergy efficiency, the sqrt benchmark results were selected.

Comparison to MCU: In contrast to SleepRunner, Pasithea
offers 4× more memory, does not use energy-optimized data
memory, runs from a single core supply voltage and does not
utilize low-power techniques such as back-gate biasing. De-
spite those factors, Pasithea surpasses or matches SleepRunner
in energy efficiency and performance in many cases, as shown
in Figs. 5 and 6. When normalizing energy to VDD

2 (in case
of SleepRunner, for its three supply voltages respectively),
a 1.4× average (4.4× peak) reduction of switching activity
(capacitance) per benchmark run becomes apparent.

TABLE II
COMPARISON OF RESULTS TO ULP CGRAS AND RISC MCU

SleepRunner
[10]

HyCube
[11]

Amber
[12]

RipTide
[2]

Pasithea-1
(this work)

Node 28nm
FD-SOI

40nm
LP

16nm
FinFET

22nm
FinFET

22nm
FD-SOI

Results silicon silicon silicon post-syn. silicon
Type RISC

MCU
CGRA

MCU-supervised self-managed
ISA ARM CM0 custom low-level bitstream RISC-like

fclk,max 80MHz 753MHz 955MHz 50MHz 97MHz

VDD (V) 0.8/0.5/0.4 0.8 – 1.1 0.84 – 1.29 unknown 0.42 – 0.9
Fabric Size N/A 4× 4 PEs 384 PEs 6× 6 PEs 8× 16 PEs
PEs/mm2 5.6 19.1 144 437
µW/MHz 3.3 84.4 unknown 14.8 1.79

Total mm2 0.574 2.87 20.1 0.25 0.75
Memory 64 kB 4 kB 4608 kB 256 kB 256 kB

Benchmark Dhrystone FFT dense lin. algebra sqrt
Peak

Performance
100

DMIPS
5380

MOPS
367 int16

GOPS
164

MOPS
97.5 int32

MIPS
Peak

Efficieny
385

DMIPS/mW
26.4 int32

MOPS/mW
538 int16

MOPS/mW
180

MOPS/mW
558.2 int32
MIPS/mW

Static Power 8.4 µW unknown unknown < 9.6 µW 2.06 µW

The used ULL transistors afford Pasithea a 4× lower static
power with full data retention compared to SleepRunner. This
shows that the presented architecture is suitable for applica-
tions that rely on low energy use during standby operation.

Comparison to CGRAs: Traditionally, CGRAs have
been optimized to outperform von Neumann architectures in
throughput, which can be seen in the performance figures
reported for Amber and HyCube. In contrast to this, RipTide
and Pasithea emphasize energy efficiency and programma-
bility, which we consider key challenges in contemporary
computer architecture. Compared to RipTide, Pasithea reduces
compile times from minutes to seconds. The performance and
efficiency figures listed in Table II give a rough overview,
but do not allow a precise comparison due to differences
in what instructions or operations were run and how they
were counted. DiAG [3], whose instruction reuse approach has
similarities to the presented architecture, was not included in
Table II, as no energy efficiency data suitable for a comparison
was reported.

Conclusion: We have shown that, by reducing instruction
fetching, the presented architecture can reduce switching ac-
tivity and improve energy efficiency in comparison to state-
of-the-art MCUs. Based on the presented findings, load/store
operations were identified as bottlenecks and candidates for
further optimization. The compiler described in Section IV
demonstrated code generation for Pasithea’s RISC-like instruc-
tion set. By addressing the code generation challenges from
Section I, the architecture enables RISC-like code generation
and fast compile times. This opens the door for further
research towards future adoption of CGRAs in general-purpose
computing.

ACKNOWLEDGEMENTS

We thank GlobalFoundries for 22 nm FD-SOI technology
access and EUROPRACTICE for providing design tools.

REFERENCES

[1] J. M. P. Cardoso et al., “Compiling for reconfigurable com-
puting,” ACM Computing Surveys, vol. 42, no. 4, pp. 1–65,
Jun. 2010.

[2] G. Gobieski et al., “RipTide: A programmable, energy-
minimal dataflow compiler and architecture,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture
(MICRO), IEEE, Oct. 2022.

[3] D. K. Wang and N. S. Kim, “DiAG: A dataflow-inspired
architecture for general-purpose processors,” in Proceedings
of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
ACM, Apr. 2021.

[4] T. Kaiser and F. Gerfers, “Pasithea-1: An energy-efficient
self-contained CGRA with RISC-like ISA,” in Architecture of
Computing Systems, Springer International Publishing, 2022,
pp. 33–47.

[5] R. Lo et al., “Register promotion by sparse partial redundancy
elimination of loads and stores,” ACM SIGPLAN Notices,
vol. 33, no. 5, pp. 26–37, May 1998.

[6] R. Carter et al., “22nm FDSOI technology for emerging
mobile, internet-of-things, and RF applications,” in 2016 IEEE
International Electron Devices Meeting (IEDM), IEEE, Dec.
2016.

[7] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in International
Symposium on Code Generation and Optimization, IEEE,
2004.

[8] A. Waterman and K. Asanović, “The RISC-V instruction
set manual, volume I: User-level ISA, document version
2019121,” RISC-V Foundation, Tech. Rep., 2019.

[9] P. Zhao and J. N. Amaral, “Ablego: A function outlining and
partial inlining framework,” Software: Practice and Experi-
ence, vol. 37, no. 5, pp. 465–491, 2007.

[10] D. Bol et al., “SleepRunner: A 28-nm FDSOI ULP Cortex-
M0 MCU with ULL SRAM and UFBR PVT compensation for
2.6–3.6-uW/DMIPS 40–80-MHz active mode and 131-nW/kB
fully retentive deep-sleep mode,” IEEE Journal of Solid-State
Circuits, vol. 56, no. 7, pp. 2256–2269, Jul. 2021.

[11] B. Wang et al., “HyCUBE: A 0.9 V 26.4 MOPS/mW, 290
pJ/op, power efficient accelerator for IoT applications,” in 2019
IEEE Asian Solid-State Circuits Conference (A-SSCC), IEEE,
Nov. 2019.

[12] A. Carsello et al., “Amber: A 367 GOPS, 538 GOPS/W 16nm
SoC with a coarse-grained reconfigurable array for flexible
acceleration of dense linear algebra,” in 2022 IEEE Sympo-
sium on VLSI Technology and Circuits (VLSI Technology and
Circuits), IEEE, Jun. 2022.

