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Abstract. This paper presents Pasithea-1, an energy-efficient coarse-
grained reconfigurable array (CGRA) with RISC-like programming inter-
face. In contrast to traditional RISC instruction sets, which are designed
for centralized von Neumann architectures, it applies RISC principles to
design an instruction set for energy-efficient CGRAs. Similar to data-
flow and in-place processing architectures such as TRIPS and DiAG,
Pasithea-1 can execute complex application code without external con-
trol. To demonstrate its programming, mechanisms and examples for
dataflow, control flow, subroutine calls, coroutines and multi-threading
are shown. A microarchitecture implementing the instruction set is pre-
sented. To reduce switching activity, its instructions, once fetched, re-
main in fabric, where they can be executed repeatedly without re-fetching.
Pasithea-1 is compared against a minimal RISC system based on placed-
and-routed designs. Using netlist simulation, energy and performance
were compared. With a 10.1× energy reduction in the memory hierarchy
and a 3.1× overall energy reduction, the described architecture surpasses
the RISC system considerably in energy efficiency.

Keywords: Reconfigurable Computing · Coarse-Grained Reconfigurable
Array · Instruction Set Architecture · Energy-Efficient Computing.

1 Introduction

Energy-efficient computing enables future low-power applications. In addition,
it is key to high performance under thermal constraints. Although technological
scaling continues to increase logic densities, it no longer improves energy effi-
ciency proportionally [1]. New approaches in computer architecture could provide
ways forward [2]. This paper explores a reconfigurable array as general-purpose
alternative to von Neumann architectures. Despite requiring more silicon area,
this approach can improve energy efficiency by reducing switching activity.

1.1 Reconfigurable Computing

In von Neumann computers, a central processing unit (CPU) fetches, decodes
and executes a continuous stream of instructions. Coarse-grained reconfigurable
arrays (CGRAs) break with this principle: Their machine code, also called con-
figuration bitstream, is distributed to array elements and can remain largely
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stationary during execution. Array elements perform computations using local
functional units and exchange data and control information to achieve complex
behavior. CGRAs potentially require less energy than von Neumann architec-
tures, as they do not require a sustained instruction stream.

Von Neumann processors execute instructions inherently in sequence. In
CGRAs, spatial replication and coexistence of resources encourages parallel exe-
cution. While this inherent parallelism enables exceptional performance, it com-
plicates their programming. General-purpose program code in high-level lan-
guages is founded upon an assumption of instruction (or statement) sequential-
ity. A shift away from this seems unlikely. This gap between software and CGRA
hardware can be bridged by elaborate compiler techniques, as described by Car-
doso et al. [3]. Despite successes, widespread replacement of von Neumann CPUs
with CGRAs in general-purpose computing is currently seen as unlikely.

1.2 Related Work

The four-type classification shown in Table 1 covers pure von Neumann archi-
tectures, pure CGRA architectures and mixtures of both.

In Type II systems, CGRA configuration and von Neumann programming are
separated in machine code. Thus, the programmer or compiler needs to divide
programs into separate parts for the two sub-architectures. Examples for Type
II systems are [9–12].

Type III systems are programmed using a von Neumann instruction set ar-
chitecture (ISA) only. They execute some parts of the instruction stream natively
on a von Neumann core; other parts are dynamically translated to CGRA config-
urations and offloaded to a CGRA. While this exposes a homogeneous ISA, the
translation process limits the scope of CGRA execution and incurs additional
hardware overhead. Examples for Type III systems are [13–16].

This paper focuses on Type IV systems: self-contained CGRAs that can
run complex programs without supervising von Neumann CPU or a translation
layer. Their homogeneous ISAs and microarchitectures make them compellingly
simple. Table 2 compares Pasithea-1, which we propose in this paper, to four
Type IV CGRAs and traditional RISC processors.

DiAG [4], a CGRA-like general-purpose processor, differs from the other
approaches by implementing RISC-V, a von Neumann ISA, but spatially dis-
tributing its instructions to PEs for in-place execution. Once loaded, instructions
remain in PEs for extended time periods and can be executed several times. This
instruction reuse distinguishes DiAG from earlier in-place processors [17, 18].

Table 1: Classification of processors based on integration and role of CGRA

Type I Type II Type III Type IV

Primary unit von Neumann von Neumann von Neumann CGRA

Subordinated unit None CGRA CGRA None

ISA homogeneous heterogeneous homogeneous homogeneous
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Table 2: Qualitative comparison of classic RISC and Type IV CGRA architectures

Classic
RISC

DiAG [4] Pasithea-1
(this work)

TRIPS [5]
(EDGE [6])

Wavescalar
[7]

PACT
XPP [8]

Type Type I (von
Neumann)

Type IV (self-contained CGRA)

ISA

RISC custom, statically fragmented code

RISC resemblance←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Local
dataflow

central
register file

register lanes single shared
bus

multiple
regfiles

multiple
shared buses
+ network

packet-
oriented
network

Local
control

flow
arbitrary

dataflow-driven

no internal
loops

arbitrary

Global
dataflow

central register file fragment-
level msg.
passing

central
register file

instr.-level
msg. passing

FIFO buffers

Self-
reconfig.

N/A implicit explicit,
low-level

Programming interfaces of TRIPS [5], Wavescalar [7] and PACT XPP [8]
bear little resemblance to RISC. To allow running programs that exceed their
fabric capacity, machine code of those architectures is statically divided into code
fragments as smallest units of reconfiguration. In contrast to DiAG and RISC,
their local control flow not explicitly encoded, but driven by dataflow.

1.3 This Work

To overcome challenges in CGRA programming and allow a wider range of ap-
plications to benefit from its merits, we propose rethinking instruction set design
to bridge the gap between CGRA hardware and general-purpose software. We
present Pasithea-1, an instruction set with a corresponding Type IV CGRA mi-
croarchitecture. Its two objectives are to allow easy programming and to surpass
minimal RISC systems in energy efficiency by reducing instruction movement.
Accordingly, the architecture is named Pasithea-1, after a mythical goddess of
rest and relaxation.

RISC principles were used as guidance in the design process, leading to a
simple and familiar programming interface. In establishing low-level instruction
sequentiality, our ISA departs from typical CGRA programming. Being tailored
for CGRA-based execution sets the Pasithea-1 ISA apart from other RISC in-
struction sets. Based on its hardware and software properties, Table 2 places
Pasithea-1 between DiAG and TRIPS.

The Pasithea-1 ISA is laid out in Section 2. Its programming is explained
in Section 3. The CGRA microarchitecture is presented in Section 4. Section 5
describes how the novel architecture was compared to a RISC system. Results
are shown in Section 6. The paper finishes with a discussion in Section 7.
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2 Instruction Set Architecture

Machine code for Pasithea-1 is structured in fragments, which are delimited by
start and end markers shown in Figure 1a. Each fragment consists of up to 64
instructions, which comprise a primary instruction word (formats D and W) and
optional prefixes (formats S and I). Figure 1 gives an ISA overview.

Section 2.1 describes the fragment instance mechanism, a level of indirec-
tion that makes fragments reentrant. Section 2.2 introduces local dataflow and
control flow mechanisms, which link instructions within a fragment. Section 2.3
describes creation and termination of fragment instances and communication
between them. Section 2.4 relates the ISA to RISC principles.

2.1 Fragment Instances

A fragment is a group of up to 64 machine instructions that can be loaded into
a contiguous CGRA sub-array. A fragment instance (FI) attaches runtime data
to a fragment and thus represents execution state of a sub-array. Multiple FIs
of a single fragment can coexist at runtime. This enables fragment reentrancy,
i.e. independent coexisting function calls executing the same fragment code.

Such a code instantiation mechanism is not found in RISC processors, as
they do not attach runtime data to machine code, but maintain execution state
in the CPU register file and in memory using a call stack.

Coexisting FIs are concurrent, unless communication primitives (Section 2.3)
constrain event ordering. Depending on microarchitecture capabilities, such co-
existing FIs can be executed in sequence or in parallel. Section 3.2 demonstrates
how fragments can be used as subroutines, coroutines and threads.

2.2 Local Interaction with Target Instruction Pointers (TIPs)

Pasithea-1 instructions are designed for decentral execution in a CGRA rather
than a CPU. They are executed sequentially. Like in RISC, machine code order
and explicitly encoded branches determine the sequence of execution.

Instantiation attaches two 32-bit operand registers, opA and opB, to each
instruction. Their values are used by local instructions as ALU inputs; memory
and global instructions use opA and opB as address or data words for memory
access or communication operations, details of which are specified in Figure 1b.

On instantiation, each instruction initializes the operand register selected by
immab with an immediate value and the other operand register with zero. By
default, immediates are limited to [−32 . . 31]. The I prefix extends this range to
arbitrary 32-bit values.

All D format instructions produce a result word on execution. To achieve
local dataflow, this result can be written to operand registers of other local
instructions. The originating instruction encodes each such data transfer as target
instruction pointer (TIP). A TIP consists of a target address field (taX ), which
references one of the fragment’s 64 instructions, and a target type field (ttX ),
whose encoding is shown in Figure 1d. Each D format instruction can directly
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Fragment start / end marker:

op en
d nalloc

31 29 28 6 0

Primary instruction types:

op funct

im
m

ab immlo tt2 ta2 tt1 ta1 D
31 29 28 25 24 23 18 15 14 13 8 7 6 5 0

op funct
im

m
ab immlo offset W

31 29 28 25 24 23 18 9 0

Instruction prefixes:

op tt4 ta4 tt3 ta3 T
31 29 15 14 13 8 7 6 5 0

op immhi I
31 29 25 0

(a) Instruction formats

Group Mnemonic Fmt. Operation

Local
or, and, xor, add, sub

slt, sltu, sll, srl, sra
D res := ALU(opA, opB)

Memory
lw, lh, lb, lhu, lbu D res := Mem [opA + opB]

sw, sh, sb W Mem [opA + offset] := opB

Global

recv (receive) D res := Msgself [MI]
with MI = (opA + opB)2:0

send W
MsgFIA [MI] := opB
with FIA = (opA + offset)31:6,
MI = (opA + offset)2:0

inv (invoke) D

invokes fragment at addr
using RMI as return MI with
addr31:3 = (opA + opB)31:3,
RMI = (opA + opB)2:0; res := new FIA

term (terminate) W terminates current FI

(b) Operations encoded by mnemonics

op
funct

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

000 or and xor add sub slt sltu sll srl sra

001 recv lb lh lw lbu lhu inv

010 send sb sh sw term

011 S prefix

100 I prefix

101 fragment start / end marker

(c) Mnemonics by opcode and funct code

ttX function X

10 write opA 1,2,3,4

11 write opB 1,2,3,4

00 branch on zero 1

01 branch unless zero 1

0x no operation 2,3,4

(d) Target type ttX (tt1, tt2, tt3,
tt4) encoding

Fig. 1: Pasithea-1 ISA overview. Highlighted instructions are adopted from RISC-V.
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encode two TIPs (tt1, ta1), (tt2, ta2). Use of the T prefix extends the possible
number of TIPs per instruction to four.

By default, instructions are executed in machine code sequence. The first
TIP can be used for conditional branching, as specified in Figure 1d. This
mechanism supersedes dedicated control flow instructions.

2.3 Global Interaction of Fragment Instances

FIs exchange data by message passing. Unique 26-bit fragment instance ad-
dresses (FIAs) identify FIs throughout their life times. For receiving messages,
each FI possesses eight message registers. Each register is identified by a three-bit
message index (MI) and either holds a single 32-bit word or is marked as empty.
The send instruction, shown in Figure 1b, sends opB to a message register of
another FI. opA specifies FIA and MI of the target message register. Message
registers already containing a value are overwritten. The recv instruction re-
turns values received in local message registers. If a requested message register
is empty, recv will block further FI execution and wait for message reception.

To spawn new FIs, fragments are invoked with inv, which takes a fragment
address as input and returns the FIA of a newly created FI. The new FI auto-
matically receives a return handle in message register 0. It can use this handle,
which consists of the invoker FIA and a return MI (RMI) set by the invoker, to
send return values to the invoker. The RMI can be used to assign return values
of concurrent FIs to separate message registers. The term instruction terminates
the current FI, invalidating its execution state and FIA.

2.4 What’s the RISC?

Like RISC architectures, Pasithea-1 follows a scalar data model and sequential
control flow model. Its adoption of RISC-V mnemonics [19] contributes to simi-
larities in programming. It is furthermore influenced by key RISC concepts [20]:

1. Each instruction performs a simple operation, which can be executed easily
without translating it to microinstructions.

2. Supporting concept 1, instructions only support one type of general-purpose
operand by default: per-instruction operand registers.

3. Memory or message operands, less commonly needed than the general-purpose
operand type, are only available through dedicated instructions.

4. The ISA is designed for hardware simplicity but leaves room for future hard-
ware upscaling and optimizations that maintain ISA compatibility.

3 Programming

Sections 3.1 and 3.2 describe programming of individual fragments and program-
ming patterns for interaction between fragments, respectively.
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3.1 Local Programming

Within fragments, TIPs encode data and control flow. Defining them manually
by labeling and cross-referencing instructions turned out infeasible for low-level
programming by hand. Therefore, an intermediate assembly-like language (IAL)
has been devised. It allows instructions to read and write local variables, which
start with a $ sign and mimic RISC’s general-purpose registers. The following
syntax is used for IAL instructions:

[L:] [goto L (if|ifnot)] [$var = ] op(opA, [offset,] opB)
The following steps translate an IAL fragment to machine code:

1. Compile-time expressions are resolved.
2. Unconditional jumps are transformed into conditionally branching or in-

structions with constant operands.
3. A control and data flow graph (CDFG) is constructed.
4. Ineffective data flow edges are removed from the graph. A data flow edge

from instruction S to operand register opX of instruction T is ineffective, if
there are no control flow paths from S to T that leave T.opX intact.

5. When instructions require more than four TIPs, excess TIPs are distributed
to supplementarily inserted or instructions.

6. Machine code is generated. Dataflow edges and conditional branches are
encoded as TIPs.

Table 3 shows an example fragment implementing Euclid’s algorithm. In-
structions 0 and 1 receive two input values, of which the greatest common divi-
sor is to be calculated, from message registers 1 and 2. Instructions 2-5 form a
loop, which is exited by a conditional jump from instruction 2 to instruction 6
once $p and $q are equal. Instructions 4 and 5 always branch to instruction 2
because their results are never zero. Instruction 6 reads the return handle (see

Table 3: Translation of IAL fragment gcd, which implements Euclid’s algorithm,
to Pasithea-1 machine code. Control flow: S=successor, C=conditional branch target,
T=true (non-zero), F=false (zero); dataflow: A=write opA, B=write opB.

↓ Source instruction CDFG adjacency matrix Fmt. TIP 1 TIP 2 TIP 3 TIP 4

0 $p = recv(1, 0) S A B D 7.opB 2.opA -

1 $q = recv(2, 0) SB D 2.opB - -

2 loop: goto end ifnot
$diff = sub($p, $q)

SA A B C D F→6 4.opA 5.opB 3.opA

3 goto p lt q if slt($diff, 0) S C D T→5 - -

4 goto loop if $p = or($diff, 0) CA S B D T→2 7.opB 2.opA -

5 p lt q: goto loop if
$q = sub(0, $diff)

CB S D T→2 2.opB -

6 end: $fia ret = recv(0, 0) SA D 7.opA - -

7 send($fia ret, 0, $p) S W - -

8 term() W - -

Target instruction → 0 1 2 3 4 5 6 7 8
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Section 2.3) and instruction 7 uses this handle to return the fragment’s result
value. Alongside the fragment’s IAL source code, Table 3 shows the processed
CDFG and resulting TIPs that will be encoded in machine code.

3.2 Global Programming

Typical programs comprise several hundred subroutines. Subroutines that are
not too complex can be implemented using a single fragment. As programs com-
monly incur millions of subroutine calls per second [21], a streamlined calling
mechanism is crucial for programmability and performance.

Figure 2a shows an example for subroutine calls. Like gcd, gcd3 starts with
receiving arguments and ends with returning a result. In between, it calculates
the greatest common divisor of three numbers using two gcd subroutine calls:
gcd3(p, q, r) = gcd(gcd(p, q), r). Subroutine calls are performed in three stages:

1. Fragment invocation: The requested subroutine fragment is invoked using
inv. In addition to the fragment address, an RMI is specified and passed to
the invoked fragment. Both calls in gcd3 use an RMI of 1. inv returns a FIA,
which will be used in the next two stages.

2. Send arguments (optional): The invoker sends argument values to the sub-
routine. By convention, the n-th argument is passed at MI = n.

3. Receive return values & synchronize control flow: The subroutine’s return
value is obtained using a receive instruction. As recv waits until the return
value is written, it also provides synchronization. A subroutine without re-
turn value needs to return a blank message for synchronization.

Figure 2b shows recursive subroutine calls, making use of reentrancy.
As described in Section 2.1, coexisting FIs are concurrent by default. Fig-

ure 2c shows an example of two concurrent gcd calls, which can be considered
separate threads. Depending on the microarchitecture’s capabilities, they can be
executed in parallel (thread-level parallelism).

Coroutines incorporate the full structural power of subroutines, but can
pass control and data back and forth without relinquishing their local state [22].
Coroutine-like constructs are gaining popularity and are available in many mod-
ern programming languages such as Python, C++, Rust and Go. An example
that implements coroutines in Pasithea-1 is shown in Figure 2d: The iterator
subroutine lfsr test receives a stream of bits from the generator subroutine lfsr,
which implements a Galois linear-feedback shift register (LFSR). lfsr test prints
all received bits through a subroutine call to print bit.

4 Microarchitecture

The microarchitecture consists of 128 processing elements (PEs), grouped in 8
tiles of 16 PEs each. Figure 3a shows an overview. Section 4.1 describes the
fragment instance manager (FIM), which manages creation and termination of
FIs and transfers FIs between fabric and memory. Section 4.2 describes execution
of FIs on fabric. Section 4.3 describes storage of dormant FIs in memory.
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1 fragment gcd3

2 $p = recv(1, 0)
}
Receive
arguments

3 $q = recv(2, 0)
4 $r = recv(3, 0)

5 $fia1 = inv(gcd+1, 0) Subroutine
call 1

6 send($fia1, 1, $p)
7 send($fia1, 2, $q)
8 $x = recv(1, 0)

9 $fia2 = inv(gcd+1, 0) Subroutine
call 2

10 send($fia2, 1, $x)
11 send($fia2, 2, $r)
12 $res = recv(1, 0)

13 $fia r = recv(0, 0)
}
Return result
& terminate

14 send($fia r, 0, $res)
15 term()

16 endfragment

(a) gcd3: subroutine call example

1 fragment qsort
2 $first = recv(1, 0)
3 $last = recv(2, 0)
4 goto end ifnot

slt($first, $last)
5 $piv = lbu($last, 0)
6 $p = sub($first, 1)
7 $j = or($first, 0)

8 loop: $mj = lbu($j, 0)
9 goto noswap if slt($piv, $mj)
10 $p = add($p, 1)
11 $mp = lbu($p, 0)
12 sb($p, 0, $mj)
13 sb($j, 0, $mp)
14 noswap: $j = add($j, 1)
15 goto loop ifnot slt($last, $j)

16 $p minus 1 = sub($p, 1)
17 $p plus 1 = add($p minus 1, 2)
18 $fia qs1 = inv(qsort+1, 0)
29 send($fia qs1, 1, $first)
30 send($fia qs1, 2, $p minus 1)
31 recv(1, 0)
32 $fia qs2 = inv(qsort+2, 0)
33 send($fia qs2, 1, $p plus 1)
34 send($fia qs2, 2, $last)
35 recv(2, 0)
36 end: $fia r = recv(0, 0)
37 send($fia r, 0, 0)
38 term()
39 endfragment

(b) qsort : Quicksort implementation

1 fragment gcd4mt

2 $p = recv(1, 0) Receive
arguments

3 $q = recv(2, 0)
4 $r = recv(3, 0)
5 $s = recv(4, 0)

6 $fia1 = inv(gcd+1, 0)
}
Launch
thread 1

7 send($fia1, 1, $p)
8 send($fia1, 2, $q)

9 $fia2 = inv(gcd+2, 0)
}
Launch
thread 2

10 send($fia2, 1, $r)
11 send($fia2, 2, $s)

12 $x = recv(1, 0)
}
Join
threads 1 & 213 $y = recv(2, 0)

14 $fia3 = inv(gcd+1, 0) Subroutine
call

15 send($fia3, 1, $x)
16 send($fia3, 2, $y)
17 $res = recv(1, 0)

18 $fia r = recv(0, 0)
}
Return result
& terminate

19 send($fia r, 0, $res)
20 term()

21 endfragment

(c) gcd4mt: multi-threading example

1 fragment lfsr test
2 $fia lfsr = inv(lfsr + 1, 0)
3 $i = 20
4 loop: $bit = recv(1, 0)
5 $fia print = inv(print bit+1, 0)
6 send($fia print, 1, $bit)
7 recv(1, 0)
8 send($fia lfsr, 1, 1)
9 goto loop if $i = sub($i, 1)

10 term()
11 endfragment

12 fragment lfsr
13 $fia r = recv(0,0)
14 $lfsr = 1
15 loop: $bit = and($lfsr, 1)
16 send($fia r, 0, $bit)
17 $lfsr = srl($lfsr, 1)
18 goto skip ifnot or($bit, 0)
19 $lfsr = xor($lfsr, 46080)
20 skip: goto loop if recv(1,0)
21 term()
22 endfragment

(d) lfsr: coroutine example

Fig. 2: Example code for Pasithea-1
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Fig. 3: Pasithea-1 microarchitecture

4.1 Fragment Instance Management

The FIM allocates a fixed-size memory frame for every FI. It manages a pool of
unused frames as linked list. Frame memory is only used when the corresponding
FI is dormant, i.e. not present on fabric (see Section 4.3). Frame base addresses
also serve as fragment instance addresses (FIAs).

When a FI is terminated, its machine code is retained in fabric as resid-
ual fragment. When a fragment is invoked and a matching residual fragment is
available, the FIM reuses it, omitting instruction fetching.

By default, new FIs are created on fabric. If fabric occupancy of other FIs
and residual fragments prevents this, new FIs are created in memory.

When all FIs on fabric are waiting for messages (recv) from dormant FIs, a
stall is detected. This triggers the following scheduling routine: A dormant
FI from the ready queue (Section 4.3) is restored to fabric. To make space for
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the dormant FI, residual fragments are cleared. If this does not suffice, waiting
FIs are evicted to memory. Least-recently used (LRU) policies are employed for
clearing of residual fragments and eviction of waiting FIs.

4.2 Tiles & PEs: Fragment Instances On Fabric

Every PE can hold one instruction and its corresponding execution state. A
variable number of tiles is required per FI: For FIs of 16 or fewer instructions,
a single tile suffices. For FIs of up to 32 or 64 instructions, two or four tiles
are linked together using the T link, which joins S buses of adjacent tiles. As
FIs enter and leave fabric, tiles are linked and unlinked on-the-fly. A similar
approach has previously been used in EDGE architectures [23].

FIs communicate with other FIs, the FIM and memory using tile interface
nodes (TINs), which contain the message registers and connect to the global
M bus. When messages are sent to FIs on fabric, target FIAs are translated to
tile indices by the fragment instance table (FIT), which the FIM manages.

Figure 3b shows one tile. Within a tile or a group of T-linked tiles, the S bus
connects all PEs and the TIN. The S bus is a shared 32-bit wide data bus with
additional meta-data and control signals. It allows the active instruction to send
output data to the TIN or up to two local PEs. Independent of this data flow
capability, the S bus also features signals for passing control flow to a PE or the
TIN.

Figure 3c shows the individual PE. Its instruction register (IR) can hold a
primary instruction and optional prefixes. opA and opB, defined in the ISA,
are held in the A and B registers. Results of memory and global operations are
received by the TIN and forwarded through the R register of the initiating PE.

During FI loading, the memory unit sends the fragment’s machine code to the
TIN, which forwards it to local PEs through the S bus. If the FI was previously
dormant, its memory representation is restored. The TIN starts execution once
all instructions are fetched and their execution states are restored if necessary.

By default, local instructions (Figure 1b) take one cycle to execute. Branches
add no latency. An S prefix adds one additional cycle of latency. Global and
memory instructions incur additional latencies.

4.3 Dormant Fragment Instances

When an FI waiting for a message is evicted from fabric, its execution state
is transferred to its allocated memory frame. This includes all operand register
values, message register values, the awaited MI, a marker for the currently active
instruction and the fragment code address. Operand register values are stored
using a compressed format, which encodes operand registers equal to zero or
equal to their immediate value using compact four-bit codes.

Addresses of dormant FIs cannot be resolved by the FIT. Messages addressed
to them are delivered through the FIM, which writes them to the frame memory
of the targeted FI. If the delivered MI matches its awaited MI, the FI is tagged
as ready and added to the ready queue, a linked list managed by the FIM.
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4.4 Memory Subsystem

A 256-bit wide memory bus connects the system to main memory. For instruction
fetching, a single 256-bit instruction buffer is used. Load/store accesses utilize
a 4 × 256-bit fully associative data cache with LRU policy. The purpose of in-
struction buffer and data cache is not to increase latency and bandwidth but to
increase energy efficiency by reducing the number of memory accesses.

5 Evaluation Methodology

We compared Pasithea-1 with a RISC-based reference system to evaluate energy
efficiency, performance and area. Table 4 lists the used benchmark programs.

The open-source RISC-V core Ibex [24, 25], configured for 32-bit integer
and compressed instructions (RV32IC), was used as reference system CPU. The
reference system integrates Ibex with the instruction buffer, data cache and
memory of Pasithea-1. Instruction fetching using the instruction buffer and data
cache hits require no wait cycles. Data cache misses incur one wait cycle.

SystemVerilog register-transfer-level models of Pasithea-1 and the RISC-V
reference system were used as basis for physical implementation. Both systems
use hierarchical clock gates to reduce switching activity. A 256 kB SRAM serves
as main memory for both systems.

Both systems were synthesized, placed and routed in GlobalFoundries 22 nm
FD-SOI CMOS [26]. For this purpose, Synopsys Design Compiler and IC Com-
piler II were used. Ultra-low-leakage standard cells based on high-VT transistors
were used to minimize the impact of static power.

Table 4: Benchmarks. (For Pasithea-1, all benchmarks were written in IAL.)

Name Description D
at

a
m

em
.

Su
br

ou
tin

es

R
ec

ur
si

on

C
or

ou
tin

es

Pasithea-1 RISC-V

C
od

e
Si

ze

Instrs.
/ Frag. C

od
e

Si
ze

Im
pl

.i
n

gcd Euclid’s algorithm 44 9 18 asm
mul shift-and-add multiply 40 9 28 asm

lfsr Galois LFSR & coroutines ! ! 132 10, 9, 7 104 asm

prime primality test ! 360 42, 9, 20 178 asm + C

md5 Message Digest 5 ! 448 30, 59 246 C

qsort Quicksort ! ! ! 204 27, 15 86 C



Pasithea-1: Energy-Efficient CGRA With RISC-Like ISA 13

0.
53

0.
15 0.
20

0.
22

0.
51 0.

63

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

R
ef P1 R
ef P1 R
ef P1 R
ef P1 R
ef P1 R
ef P1

0.5

1

qsortmd5primelfsrmulgcd

Ref P1
Cache + Other
SRAM
CPU / Tiles

(a) Normalized energy (static & dynamic)

1.
46

0.
95

1.
85

1.
69 2.

05

3.
62

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

R
ef P1 R
ef P1 R
ef P1 R
ef P1 R
ef P1 R
ef P1

1

2

3

qsortmd5primelfsrmulgcd

Ref P1

(b) Normalized execution time

Fig. 4: Benchmarking results for reference system (Ref) and Pasithea-1 (P1)

6 Results

Based on timing-annotated netlist simulation and vector-based power analysis
of the placed-and-routed designs, Figure 4a compares energy use of Pasithea-1
with that of the reference system. Static power accounted for 0.6% and 4.4%
of total power for the reference system and Pasithea-1, respectively. Geometric
means over the presented benchmarks reveal a 10.1× improvement of energy
efficiency in the memory hierarchy and a 3.1× overall improvement.

Static timing analysis revealed maximum clock frequencies of 40 MHz for
Pasithea-1 and 52 MHz for the reference system. Figure 4b compares execution
times of the benchmarks at maximum clock speeds. In execution time, the refer-
ence system outperforms Pasithea-1 by a factor of 1.78. This can be attributed
to latencies in global (FIM) and memory operations, which were not optimized
during design.

Excluding SRAM, logic cell areas were 8932µm2 for the reference system and
244,121 µm2 (27.3× larger) for Pasithea-1. This area disparity shrinks to 1.8×
when the SRAM (∼ 300,000 µm2) is included.

7 Discussion

As shown in Section 6, Pasithea-1 achieves extraordinarily low switching rates
and surpasses the RISC reference in energy efficiency considerably. Its easy low-
level programming interface, demonstrated in Section 3, promises to make this
energy efficiency available to a wide range of applications. A compiler backend
for Pasithea-1 is currently under development and will enable further research
into the viability and tradeoffs of using CGRA for general-purpose computing.

Clock frequency and per-cycle performance are weaknesses of the presented
CGRA. Per-cycle performance was not optimized for in the presented microarchi-
tecture and can likely be improved in future design iterations. To compete with
general-purpose von Neumann processors in single-thread performance, higher
clock frequencies must be supported using faster logic cells. Naively speeding up
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all cells, e.g. by replacing them with lower-VT versions, would incur an unaccept-
ably large static power penalty. To achieve higher performance while maintaining
energy efficiency, techniques such as fine-grained body biasing could be used to
dynamically provide speed where needed and reduce static power in other parts
of the design.

With growing array sizes, we predict tile-tile and tile-memory data transfers
to dominate energy efficiency and performance, likely encouraging dynamic op-
timization of tile and cache allocation. In the long term, further scaling of the
presented approach could allow large fractions of complex programs to remain
largely stationary in CGRA fabric.

Acknowledgements We thank GlobalFoundries for access to their 22 nm FD-
SOI technology and EUROPRACTICE for providing design tools.
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